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o Transcriptomes (RNA-Seq, Illumina), different ages, 5 species 
o > 1000 transcriptomes



“Finclip study”

o Fin biopsis from 152 individuals of N. furzeri aged 10 or 20 weeks 
(max. lifespan 60 weeks) without sacrificing the fish → record 
lifespan data

o → for each fish: transcriptome at 10 & 20 weeks +  lifespan

Fishes were subdivided into 
3 lifespan groups: 
o short-lived, 
o medium-lived, 
o long-lived

Note: grouping into (G1, G2,G3) is 
not mandatory. RF can also be used 
for regression.



Transcriptome data
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predictors, features, 
variables (genes)

samples,
obervations 
(fishes)

Predict this symbol 
(G1, G2, G3) from 
other columns

TODO: Identify those genes whose expression is predictive for lifespan 
→ establish statistical model



After the 1st split, we
have one pure leaf with
G1 and samples from
lifespan group G2 & G3

With 2 splits, “pure” leaves 
were created (containing 
one class only)

These are now our decision rules – the model

Decision tree:

Training set



Test set,
prediction

A new sample with still unknown class (lifetime)

We apply the decision rules ”learned” above

o Using the model (the decision tree), we can predict the lifespan class of some 
indvidual based on it's transcriptome (at early age).

o In order to make unique predictions, we must achieve pure leafs (with a few splits). 



Creating pure leaves: Measuring purity
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𝐻: entropy ; 𝑝𝑖: probability (fraction)

“purity” 
= low entropy
& high information 
content

“impurity” 
= high entropy
& low information 
content



Creating pure leaves: Entropy before and after split

Uwe Menzel, 2015

Weighted average of child 
node entropies:
o 𝑁𝑖 = nr. samples in a leaf
o 𝐻𝑖 = entropy in a leaf
o 𝑁 = σ 𝑁𝑖

Information gain = 0.925 − 0.792 =
0.133 ; Information gain = entropy 
reduction from parent to child nodes.



Creating pure leaves: Finding the (best) splits
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order when this variable is probed 

o Try out: 
o all variables (Nfu_ …...)
o all splits (midpoints of ordered expression values)

o choose the split with highest information gain
o ID3, C4.5 algorithms (Ross Quinlan*)

o Quinlan, J. R. 1986. Induction of Decision Trees. Mach. Learn. 1, 1 (Mar. 1986), 81-106
o https://en.wikipedia.org/wiki/ID3_algorithm 



Finclip-study
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Keep tree reasonable small 
to avoid overfitting, even if 
impure leaves remain!

library(RWeka)
tree <- J48(lifespan ~ ., data = df)
summary(tree)
plot(tree)

J48 is an implementation of the C4.5 
algorithm which in turn is an extension 
of Quinlan's earlier ID3 algorithm. 



Classification by Machine Learning

www.matstat.org

o Once the tree is created, we can classify new samples by "running 
them down the tree" (Breiman, Cutler*) → classification

o https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm 

o We habe established a “model” and are now able to automatically 
classify new samples → machine learning

http://gureckislab.org/blog



Ups & Downs of Decision Trees
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Advantages:

o classifier that is favourable when the number of variables 
(genes) is higher than the number of observations (samples)  
(90 samples, 15.000 genes) 

o tree pinpoints genes that are informative with regard to some 
attribute (here with regard to age). 

Drawback:

o Overfitting, bias-variance dilemma

o Having huge data with big variance, correlation between 
predictors and response variables can occur which is purely 
casual!

Solution: Use Random Forest!

https://en.wikipedia.org/wiki/Pruning_(decision_trees)



Random Forest (RF)
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o Breiman, Cutler, 2001*

o ensemble classifier, creates many decision trees (typically 1000)

o prediction by aggregating multiple deep (unpruned) trees

o prevention of overfitting to training set

o use subset of data for every tree:

1. sample with replacement from the observations → reduces variance

2. select random subset of variables → identify additional predictors

* Breiman, Leo (2001). "Random Forests". 
Machine Learning 45 (1): 5–32



Sampling in RF

Uwe Menzel, 2015

Ignore about Τ1 3 of the observations (fishes) by sampling with replacement

Randomly choose 𝑁 of the 𝑁 variables (genes)

every tree is build with a subset of the data
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Liaw, Wiener: Classification and 
Regression by randomForest  



Error estimation for RF

Liaw, Wiener: Classification and Regression by randomForest  



Variable Importance in RF
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o a measure of the explanatory power of a variable (gene) with regard to 
the response (lifespan)

o Permutation importance: 
o scramble i-th variable in training set and record change in the out-

of-bag error

Plot: permutation importance

gene names



Feature selection (variable selection)
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o selecting a subset of relevant features (variables, predictors) for use 
in the model (Wikipedia)

o here: select relevant genes (= variables) for prediction

o R package varSelRF (Diaz-Uriarte, 2006)

o builds RF models recursively, and abandons the variables (genes) 
with the lowest predictive power on every step

o predictive power is measured by out-of-bag (OOB) error

set.seed(99)
rf.model <- varSelRF(expr.data.df, class, 

ntree = 5000, 
vars.drop.frac = 0.2, 
keep.forest = T) 

best.variables = rf.model$selected.vars 
length(best.variables)



“Averaged tree”
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The tree is based on the genes with the 
largest importance values calculated 
by the Random Forest model.



Important Genes = Biomarkers
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o Biomarkers for ageing

o Enrichment analysis: GO, KEGG

o #1: "spectrin alpha 2": scaffold proteins that stabilize 
the plasma membrane

o #4 "clathrin"  major protein component of the 
cytoplasmic face of intracellular organelles

o #7 "mitochondrial ribosomal protein" ….

Plot: permutation 
importance vs. genes



Proximity of the samples
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RF calculates a proximity matrix (how close is every pair of samples?)

o if samples end up in the same leaf 
frequently, they are considered 
similar

o proximity matrix →  Multi-
Dimensional Scaling (MDS-) plot

o MDS-plot presents samples in a 2-
or 3-D plot by preserving the 
relative distances between 
samples

o a point represents the whole 
transcriptome of a sample

o samples cluster well according to 
lifespan group



Cross Validation
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Training set: 
build RF model

Test set: “forget” the 
response (for a while)

10-fold CV:  subdivide samples randomly into 10 parts
o Use 90% as training set, 10% as test set
o Repeat classification 10 times
o Calculate average classification errror

ca. 70% correctly classified 
in the finclip study



Pitfall in Cross Validation
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Common mistake: knowledge leaking1 

o Feature selection must be made on the training set only

o The test set must not be included in feature selection

http://gemler.fzv.uni-mb.si/results.php

1 http://www.alfredo.motta.name/cross-validation-done-wrong



Variable Selection and Cross Validation



Summary
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o Expression levels at early age (10/20 weeks) can be used to predict, with 
some accuracy, lifespan of individuals of killifish (N. furzeri).

o Samples cluster fairly well to the recorded lifespan (in MDS-plot), 
confirming the lifespan-predictive power of the identified biomarkers.

o 10-fold cross validation shows that almost 70% of the samples of the test 
set can be classified correctly (but not for a held-out dataset!)

o Classification performance is similar for 10 & 20 week-transcriptomes, 
and for the  change of expression between 10 & 20 weeks.

o Complete separation of the groups is unlikely, as some of the short-lived 
animals may not have survived for reasons not related to ageing. 

o Validation using an independent test set is desirable in order to obtain a 
more solid assessment of the prediction performance.



Resources
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o Rweka:   https://cran.r-project.org/web/packages/RWeka/index.html 

o randomForest: https://cran.r-project.org/web/packages/randomForest/index.html 

o varSelRF: https://cran.r-project.org/web/packages/varSelRF/index.html 

o Breiman/Cutler RF: https://www.stat.berkeley.edu/~breiman/RandomForests/

o “RWeka Odds and Ends” by Kurt Hornik (R core team), 2014

o Liaw, Wiener: “Classification and Regression by randomForest”, R News, 2002

o Diaz-Uriarte, “GeneSrF and varSelRF ...” 
http://www.ncbi.nlm.nih.gov/pubmed/17767709

o “A Brief Tour of the Trees and Forests”, R-Bloggers,  http://www.r-bloggers.com/a-
brief-tour-of-the-trees-and-forests/
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ID3, C4.5 (Quinlan), RF (Breiman)




