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o Transcriptomes (RNA-Seq, [llumina), different ages, 5 species
o > 1000 transcriptomes

C. elegans N. furzeri (Killifish) D. rerio (zebrafish) M. musculus H. sapiens
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“Finclip study”

Fin biopsis from 152 individuals of V. furzeri aged 10 or 20 weeks
(max. lifespan 60 weeks) without sacrificing the fish — record

lifespan data

— for each fish: transcriptome at 10 & 20 weeks + lifespan

Lifespan distribution for 30 individuals
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Fishes were subdivided into
3 lifespan groups:

o short-lived,

o medium-lived,

o long-lived

Note: grouping into (G1, G2,G3) is
not mandatory. RF can also be used
for regression.




Transcriptome data

Nfu_g_1 015316 Nfu_g_1 822387 Nfu_g_1 007729 Nfu g 1 011568 Nfu_g_1 817364 Nfu_g_1 011804 lifespan

1516_16 1.783383 3.783560 0.7551712 2.539021 10.62691 0.2986646 G1
L510_20 4.610213 3.680158 0.5084912 3.256471 17.02645 0.3995374 G1
L51_10 3.487960 2.028367 0.9885908 1.576127 15.94995 0.6600103 G1
L511_16 7.491374 2.719286 0.6367047 1.566329 14.29085 1.4492038 G2
L511_20 5.550955 1.585267 0.4532070 1.492758 11.00229 0.6734699 G2
L51_20 3.962182 4.192136 0.3688653 2.719002 12.47558 0.8255347 G1
L512_16 6.148398 7.738688 0.7528698 3.050520 14.01485 1.9913062 G2
L512_20 5.691901 4.942013 0.4244077 2.673257 12.76144 0.4833154 G2
1513_16 6.176109 7.046949 0.9157133 3.299551 18.65433 1.8501543 G2
1513 20 4.258711 5.333459 0.4729034 1.737829 14.75942 1.2208889 G2
\™ o 7
samples., predictors, features, Predict this symbol
obervations variables (genes) (G1, G2, G3) from
(fishes) other columns

TODO: Identify those genes whose expression is predictive for lifespan
— establish statistical model

www.matstat.org



Decision tree: Fish# | genel | gene2 | gene3d class
O ' 1 6.1 7.1 1.9 G1 (long)
Training set 2 54 | 39 | 42 G1 (long)
3 1.1 2.0 2.4 G2 (medium)
4 2.0 4.0 7.4 G2 (medium)
9) 1.5 2.1 1.2 G3 (short)
6 1.2 3. 9.3 G3 (short)
Fish data
parent node Gl=2; G2=2;: G3=2 After the 1st split, we
e have one pure leaf with
a ™ Gl and samples from
: ? ‘.
N genel® lifespan group G2 & G3
>30T <37
‘/' split “A_ -
' N
G1=2; G2=0; G3=0 . gene2? )
>35 ~ . <35
» A

With 2 splits, “pure” leaves
were created (containing

G1=0: G2=2: G3=0

G1=0; G2=0; G3=2

one class only)

These are now our decision rules - the model



Test set,
prediction

A new sample with still unknown class (lifetime)

Fish# genel gene2 gene3

class

7 3.2 4.7

2.3 27

G1=2; G2=0; G3=0

We apply the decision rules "learned” above

>iy __ <35
\\\*

G1=0,; G2=2; G3=0 G1=0; G2=0; G3=2

J

o Using the model (the decision tree), we can predict the lifespan class of some
indvidual based on it's transcriptome (at early age).
o In order to make unique predictions, we must achieve pure leafs (with a few splits).



Creating pure leaves: Measuring purity

N
H=— Z p; - 1Inp; H: entropy ; p;: probability (fraction)
=1
Leaf #1 Leaf #2
Class Gl G2 G3 Class Gl G2 G3
#samples 3 0 0 #samples 1 1 1
P, 3/3 0/3 0/3 P 1/3 1/3 1/3
3 (3) % (2) 0 (Y N e N G DL A I
“purity” “impurity”
= low entropy = high entropy
& high information ¢ | &low information
g i o | !

G1 G2 G3
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Creating pure leaves: Entropy before and after split

H=0.925;N=13

G1=8 | G2=2 | G3=3

H=0;N =3 (2 )
1 1 _ H? — 1'0297; Nj =10
G1-3|G2-0| G3=0 | G1=5| G2=2 | G3=3
U "N, Weighted average of child
I = Z N H; node entropies:
=1 o N; = nr. samples in a leaf
N, Ny o H; = entropy in a leaf
N, + N, 1 N, + N, 2 o N=)N;
3 10 Information gain = 0.925 — 0.792 =
— 13 -0+ 1_3 1.0297 = 0.792 0.133; Information gain = entropy

reduction from parent to child nodes.

Uwe Menzel, 2015
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LS1_26

Creating pure leaves: Finding the (best) splits

Nfu_g_1 015316 Nfu_g_1 822387 Nfu_g_1 087729 Nfu g 1 011568 Nfu_g_1 817364 Nfu_g_1 011804 lifespan

1.
.912910
.130268
.179805
.487960
.566403
.658328
. 710652
.845079
.962182

L Lad L L Ll g L B

783383

3.
.311607
026144
.360687
.028367
.069780
.870489
.824557
.204667
.192136

Pl
e 00 D B B W

783560

. 7551712
.2488983
.2906958
4278054
.9885908
5727213
4121220
.8620429
.5187278
.3688653

Lo Qs B I -+ o+ Qe -+ R s o o ]

order when this variable is probed

o Try out:

o all variables (Nfu_ ......
o all splits (midpoints of ordered expression values)
o choose the split with highest information gain

)

o ID3, C4.5 algorithms (Ross Quinlan®)

o Quinlan, J. R. 1986. Induction of Decision Trees. Mach. Learn. 1, 1 (Mar. 1986), 81-106
o https://en.wikipedia.org/wiki/ID3_algorithm

2.
.865725
092429
.074309
576127
. 710495
977915
.575994
.234556
. 715002
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539021
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10.
17.
14.
17.
15.
13.
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10.
12.
12.

026911
114136
161903
036349
949953
471091
516363
774487
295116
475581

Lo Qs B I -+ o+ Qe -+ R s o o ]

. 2986646
. 7669024
3040331
.8413103
.6600103
.8510692
5995242
. 7982864
.6729676
8255347

Gl
Gl
G2
G1
Gl
Gl
G3
G2
G3
Gl



library(RWeka)

. . ) tree <- J48(lifespan ~ ., data = df)
FlnChp'StUdy R summary(tree)

plot(tree)

J48 is an implementation of the C4.5

algorithm which in turn is an extension
of Quinlan's earlier ID3 algorithm.

<36.197 >36.197
group1
(10.0) Nfu_g 1 005842
<0.02 >0.02
@ Nfu_g_1_010516
<0217 >0217 <3.948 >3.948
Nfu_g 1 022144 group2 Nf groupt
ug 1| (14.0/1.0) u_g 1013260 (2.0)
<002 >0.029 <0.743  >0.743
group1 group2 group3
6.0) 3.0) Nfu_g_1_005842 17.0)
<0.12 >0.12
Keep tree reasonable small 9[;‘3‘;3 g;:‘g;z

to avoid overfitting, even if

impure leaves remain!
Uwe Menzel, 2015



Classification by Machine Learning

o Once the tree is created, we can classify new samples by "running
them down the tree" (Breiman, Cutler*) — classification

O https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm

o We habe established a “model” and are now able to automatically
classify new samples — machine learning

Tl ﬁ}
http: //gurecklslab org/blog

1- I Vo aN
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Ups & Downs of Decision Trees

Advantages:

o classifier that is favourable when the number of variables
(genes) is higher than the number of observations (samples)
(90 samples, 15.000 genes)

o tree pinpoints genes that are informative with regard to some
attribute (here with regard to age).

Drawback:
o Overfitting, bias-variance dilemma

o Having huge data with big variance, correlation between
predictors and response variables can occur which is purely
casual!

Solution: Use Random Forest!

https://en.wikipedia.org/wiki/Pruning_(decision_trees)

www.matstat.org



Random Forest (RF)

Breiman, Cutler, 2001*
ensemble classifier, creates many decision trees (typically 1000)
prediction by aggregating multiple deep (unpruned) trees
o prevention of overfitting to training set
use subset of data for every tree:
1. sample with replacement from the observations — reduces variance

2. select random subset of variables — identify additional predictors

* Breiman, Leo (2001). "Random Forests".
Machine Learning 45 (1): 5-32

www.matstat.org



Sampling in RF

Nfu_g_1 015316 Nfu g 1 022387 Nfu_g 1 807729 Nfu g 1 611568 Nfu_g_1 017364 Nfu g _1 011884 lifespan

L516_16 1.783383 3.783560 0.7551712 2.53p021 16.02691 0.2986646 G1
LS516_20 4.610213 3.689158 0.5084912 3.25p471 17.02645 0.3995374 G1
4—46 - e 636748 =y te-2oeesy—————irigi2o3p——gd—
L511_260 5.558955 1.585267 0.4532070 1.49pP758 11.00229 0.6734699 G2
LS1_20 3.962182 4.192136 0.3688653 7802 12.47558 0.8255347 G1
LSlE:EB 5.691901 4.942013 0.4244077 2.67257 12.76144 0.4833154 G2
L513_16 6.176109 7.045949 ®.9157133 3.29p551 18.65433 1.8501543 G2
LS13 20 4 258711 L_3334cQ A_AT29A34 1 737829 14 75042 1228889 G2
L514_16 7.619397 15.060436 0.6466326 2.421878 12.22194 1.1121912 G2
L514_20 5.671981 6.595495 0.4721143 1.698458 16.63263 0.7399827 G2
=== i 055208 2435 32255 & 3753 GOt IO BLALGE .
L515_20 6.147395 1.433401 0.2440111 2.7485860 19.95349 0.4995860 G2
L516_160 3.710652 20.828557 0.8620429 2.57p994 10.77449 0.7982864 G2
L516_20 4.483383 12.62D638 0.5761642 1.92p418 17.73283 0.4466388 G2
L517_160 5.319336 3.401925 0.4684633 3.698792 13.93959 ©.9389352 G2
—=S 4Gk =1 E38= P4 280803 145t AT e S =
L518_160 4.190156 1.514862 0.2463951 1.185550 19.16160 1.1947903 G2
L518_20 3.130268 1.026144 0.2906958 2.09p429 14.16190 0.3040331 G2

—— Ignore about 1/3 of the observations (fishes) by sampling with replacement
—— Randomly choose VN of the N variables (genes)

|:> every tree is build with a subset of the data

Uwe Menzel, 2015



## Default S3 method:
randomForest(x, y=NULL, xtest=NULL, ytest=NULL, ntree=500,
mtry=1f (!'is.null(y) && 'is.factor(y))

max (floor(ncol(x)/3), 1) else floor(sqrt(ncol(x))),

replace=TRUE, classwt=NULL, cutoff, strata,

sampsize = if (replace) nrow(x) else ceiling(.632*nrow(x)),
nodesize = 1f ('is.null(y) && 'is.factor(y)) 5 else 1,
maxnodes = NULL,

importance=FALSE, localImp=FALSE, nPerm=1,
proximity, oob.prox=proximity,
norm.votes=TRUE, do.trace=FALSE,

keep.forest=!is.null(y) && is.null(xtest), corr.bias=FALSE,

keep.1inbag=FALSE, ...)

data

For each of the bootstrap samples, grow an un-:
- pruned classification or regression tree, with the:
following modification: at each node, rather:
than choosing the best split among all predic-:
‘tors, randomly sample ., of the predictorsi
‘and choose the best split from among those:

www.matstat.org



## S3 method for class 'formula’
randomForest(formula, data=NULL,
#i# Default S3 method:
randomForest(x, y=NULL, xtest=NULL, ytest=NULL, ntree=500,
mtry=if (!is.null(y) && !is.factor(y))
max(floor(ncol(x)/3), 1) else floor(sgrt(ncol(x))),
replace=TRUE, classwt=NULL, cutoff, strata,
sampsize = if (replace) nrow(x) else ceiling(.632*nrow(x)),
nodesize = if (!is.null(y) && !is.factor(y)) 5 else 1,
maxnodes = NULL,
importance=FALSE, localImp=FALSE, nPerm=1,
proximity, oob.prox=proximity,

., subset, na.action=na.fail)

. Draw #yyee bootstrap samples from the original :
' data. I

Liaw, Wiener: Classification and
Regression by randomForest

For each of the bootstrap samples, grow an un-:
pruned classification or regression tree, with the:
followmg modification: at each node, rather:
than choosing the best split among all predic-:
tors, randomly sample 1, of the predictors:
‘and choose the best split from among those:

Predict new data by aggregating the predic-
|:> tions of the nyre. trees (i.e., majority votes for

classification, average for regression).



Error estimation for RF

An estimate of the error rate can be obtained,
based on the training data, by the following:

1. At each bootstrap iteration, predict the data
not in the bootstrap sample (what Breiman
calls “out-of-bag”, or OOB, data) using the tree
grown with the bootstrap sample.

2. Aggregate the OOB predictions. (On the av-
erage, each data point would be out-of-bag
around 36% of the times, so aggregate these
predictions.) Calcuate the error rate, and call
it the OOB estimate of error rate.

Our experience has been that the OOB estimate of
error rate is quite accurate, given that enough trees
have been grown (otherwise the OOB estimate can
bias upward; see Bylander (2002)).

Liaw, Wiener: Classification and Regression by randomForest



Variable Importance in RF

o ameasure of the explanatory power of a variable (gene) with regard to
the response (lifespan)
o Permutation importance:
o scramble i-th variable in training set and record change in the out-

of-bag error >

Permutation Importance

Nfu g_1 815316
L510_10 1.783383 =
L510_20 4.610213 S ]
L51_10 3.487960
LS11_16 7.491374 g _ Plot: permutation importance
L511_20 5.550955 g °
LS1_20 3.962182 £ _
LS12_16 6.148398 £ S
L512_20 5.691901
L513_10 6.176109 5
L513_20 4.258711 °
L514_160 7.619397 IIIIIIIIIIIII
L514_20 5.671981 % -
LS15_10 4.985908

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
——————————————————————————————

ooooooooooooo

cccccc

1=

S

1=

ooooooooo

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
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Feature selection (variable selection)

selecting a subset of relevant features (variables, predictors) for use
in the model (Wikipedia)

here: select relevant genes (= variables) for prediction
R package varSelRF (Diaz-Uriarte, 2006)

builds RF models recursively, and abandons the variables (genes)
with the lowest predictive power on every step

predictive power is measured by out-of-bag (OOB) error

set.seed(99)
rf.model <- varSelRF(expr.data.df, class,
ntree = 5000,

vars.drop.frac = 0.2, R
keep.forest = T)

best.variables = rf. modelSselected.vars
length(best.variables)

www.matstat.org



o

veraged tree”

Nfu_g_1_009096

The tree is based on the genes with the
largest importance values calculated
by the Random Forest model.

<36.197 >36.197
group1
(10.0) Nfu_g_1_005842

<0.02 >0.02
@ Nfu_g_1_010516
<0.217 >0.\217 <3.948 >3.\948
Nf 1_022144 group2 Nf 1_013260 groupt
u9_1- (14.0/1.0) U9t (2.0)
<0.02 >0.029 <0.743 >0.743
groupi group2 group3
(8.0) (3.0) Nfu_g_1_005842 (17.0)

<0.12 >0.12

group3 group2
(2.0) (4.0)

Uwe Menzel, 2015



Important Genes = Biomarkers

o Biomarkers for ageing

o Enrichment analysis: GO, KEGG

o #1:"spectrin alpha 2": scaffold proteins that stabilize
the plasma membrane

o #4 "clathrin" major protein component of the
cytoplasmic face of intracellular organelles
#7 "mitochondrial ribosomal protein” ....

@
||||||||IIIIII||||||||||||||
# importance vs. genes

0.003 0.004
| |

1

Importance
0.002

0.001

0.000

www.matstat.org



Proximity of the samples

RF calculates a proximity matrix (how close is every pair of samples?)

if samples end up in the same leaf
frequently, they are considered
similar

proximity matrix — Multi-
Dimensional Scaling (MDS-) plot
MDS-plot presents samples in a 2-
or 3-D plot by preserving the
relative distances between
samples

a point represents the whole
transcriptome of a sample

samples cluster well according to
lifespan group

0.4

0.2

0.0

-0.2

-0.4

MDS plot for proximity data

A short-lived
4 medium-lived

long

-lived

o 10w

| A 20w

-0.4 -0.2

Uwe Menzel, 2015




Cross Validation

g_1 607729 Nfu_g_1 011568 Nfu_g_1 017364 Nfu_g_1 011804 lifespan

0.7551712 2.539021 10.02691 0.2986646 GI "\

0.5084912 3.256471 17.02645 0.3995374 G1

0.9885908 1.576127 15.94995 0.6600103 G1

0.6367047 1.566329 14.29085 1.4492038 G2

0.4532070 1.492758 11.00229 0.6734699 G2

0.3688653 2.719002 12.47558 0.8255347 G1 Training set:

0.7528698 3.050520 14.01485 1.9913062 G2 :

0.4244077 2.673257 12.76144 0.4833154 G2 build RF model
0.9157133 3.299551 18.65433 1.8501543 G2

0.4729034 1.737829 14.75942 1.2208889 G2

0.6466326 2.421878 12.22194 1.1121912 G2

0.4721143 1.698458 16.63263 0.7399827 G2

0.2989142 1.678799 18.81677 0.8052556 G2

0.2440111 2.748580 19.95349 0.4995860 G2 )

0.8620429 2.575994 10.77449 0.7982864 G2

0.5761642 1.922418 17.73283 0.4466388 G2 Test set: “forget” the
0.4684633 3.693792 13.93959 0.9389352 G2 :
0.4089893 2.412451 14.00179 0.3559631 G2 response (for a while)
0.2463951 1.185550 19.16160 1.1947903 G2

0.2906958 2.092429 14.16190 0.3040331 2

10-fold CV: subdivide samples randomly into 10 parts
o Use 90% as training set, 10% as test set
o Repeat classification 10 times

o Calculate average classification errror

ca. 70% correctly classified
in the finclip study

Uwe Menzel, 2015



Pitfall in Cross Validation

Common mistake: knowledge leaking?
o Feature selection must be made on the training set only

o The test set must not be included in feature selection

Repeat 10 x for 10— Fold Cross Validation Cross-fold
Evaluation

<> (Classification Model|
i SVM
DB%EEI ¥ | Training Set . ( T ) Test Set
90% samples B . 10% samples
Set ( ples) Feature Selection (10% samples)
—_— 5 (SVM-RFE)

http://gemler.fzv.uni-mb.si/results.php

L http://www.alfredo.motta.name/cross-validation-done-wrong

www.matstat.org



Variable Selection and Cross Validation

-~
-
p
-
-
"#

| Training set (90%)

\J

Variable selection
varSelRF()

Y

Dataset (RPKM)

RF on selected variables
randomForest()

Prediction

.

Test set (10%)

Y

remove response
(but don't forget)

\j

predict()

Test set (10%)

\j

Prediction error

next partition as test set




Summary

Expression levels at early age (10/20 weeks) can be used to predict, with
some accuracy, lifespan of individuals of killifish (N. furzeri).

Samples cluster fairly well to the recorded lifespan (in MDS-plot),
confirming the lifespan-predictive power of the identified biomarkers.

10-fold cross validation shows that almost 70% of the samples of the test
set can be classified correctly (but not for a held-out dataset!)

Classification performance is similar for 10 & 20 week-transcriptomes,
and for the change of expression between 10 & 20 weeks.

Complete separation of the groups is unlikely, as some of the short-lived
animals may not have survived for reasons not related to ageing.

Validation using an independent test set is desirable in order to obtain a
more solid assessment of the prediction performance.

www.matstat.org
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Resources

Rweka: https://cran.r-project.org/web/packages/RWeka/index.html
randomForest: https://cran.r-project.org/web/packages/randomForest/index.html
varSelRF: https://cran.r-project.org/web /packages/varSelRF /index.html
Breiman/Cutler RF: https://www.stat.berkeley.edu/~breiman/RandomForests/
“RWeka Odds and Ends” by Kurt Hornik (R core team), 2014

Liaw, Wiener: “Classification and Regression by randomForest”, R News, 2002

Diaz-Uriarte, “GeneSrF and varSelRF ..
http://www.ncbi.nlm.nih.gov/pubmed /17767709

“A Brief Tour of the Trees and Forests”, R-Bloggers, http://www.r-bloggers.com/a-
brief-tour-of-the-trees-and-forests/

www.matstat.org



Appendix

Prediction of Phenotype by Transcriptome classification
using Random Forest Machine Learning

Uwe Menzel, 2012

uwe.menzel@matstat.de
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Random Forest for Regression or Classification.

1. For b=1 to B:

(a) Draw a bootstrap sample Z* of size N from the training data.

(b) Grow a random-forest tree T}, to the bootstrapped data, by re-
cursively repeating the following steps for each terminal node of
the tree, until the minimum node size n,,;, 1s reached.

1. Select m variables at random from the p variables.
ii. Pick the best variable/split-point among the m.
iii. Split the node into two daughter nodes.

2. Output the ensemble of trees {T}}].
To make a prediction at a new point =:
Regression: ff(m] = % Zﬁil Ty(z).

Classification: Let Cy(z) be the class prediction of the bth random-forest
tree. Then CZ(z) = majority vote {Cy(z)}P.

Hastie, Tibshirani, Friedman: The Elements of Statistical Learning



Splitting on continuous attributes

* Binary splits: A <=xand A > x

* Attribute A with (sorted) values a,, a,, a,, ..., a
consider all possible (n-1) split points
For efficiency, consider values from a sample

n

Data Mining Techniques, by M.J.A. Berry and G.S Linoff, 2004

www.matstat.org



ID3, C4.5 (Quinlan), RF (Breiman)

The 1D3 algorithm begins with the original set S as the root node. On each iteration of the algorithm, it iterates
through every unused attribute of the set S and calculates the entropy H(S) (or information gain 1G(A)) of that
attribute. It then selects the attribute which has the smallest entropy (or largest information gain) value. The set S
is then split by the selected attribute (e.g. age <50, 50 <= age < 100, age == 100) to produce subsets of the
data. The algorithm continues to recur on each subset, considering only attributes never selected before.

C4.5 builds decision trees from a set of training data in the same way as 1D3, using the concept of information
entropy. The training dataisaset S ={s_1, s_2, ...} of already classified samples. Each sample s_i consists of a p-
dimensional vector (x_{1,1}, x_{2.i}, ... x_{p.i}) . where the x_j represent attribute values or features of the sample, as
well as the class in which s_i falls.

At each node of the tree, C4.5 chooses the attribute of the data that most effectively splits its set of samples into
subsets enriched in one class or the other. The splitting criterion is the normalized information gain (difference in
entropy). The attribute with the highest normalized information gain is chosen to make the decision. The C4.5
algorithm then recurs on the smaller sublists.

The RF bootstrapping procedure leads to better model performance because it decreases the variance of the
model, without increasing the bias. This means that while the predictions of a single tree are highly sensitive to
noise in its training set, the average of many trees is not, as long as the trees are not correlated. Simply training
many trees on a single training set would give strongly correlated trees (or even the same tree many times, if the

training algorithm is deterministic); bootstrap sampling is a way of de-correlating the trees by showing them different
training sets.

https-/en.wikipedia orgfwiki/ID5_algorithm
https:fen.wikipedia orgfwiki/C4.5_algorithm
https:fen wikipedia orgfwiki’Random_forest



Leo Breiman
Statistics Department
University of California
Berkeley, CA 94720

January 2001
Abstract

Random forests are a combination of tree predictors
such that each tree depends on the values of a random
vector sampled independently and with the same
distribution for all trees in the forest. The
generalization error for forests converges a.s. to a limit
as the number of trees in the forest becomes large.
The generalization error of a forest of tree classifiers
depends on the strength of the individual trees in the
forest and the correlation between them. Using a
random selection of features to split each node yields
error rates that compare favorably to Adaboost
(Freund and Schapire[1996]), but are more robust with
respect to noise. Internal estimates monitor error,
strength, and correlation and these are used to show
the response to increasing the number of features used
in the splitting. Internal estimates are also used to
measure variable importance. These ideas are also
applicable to regression.



