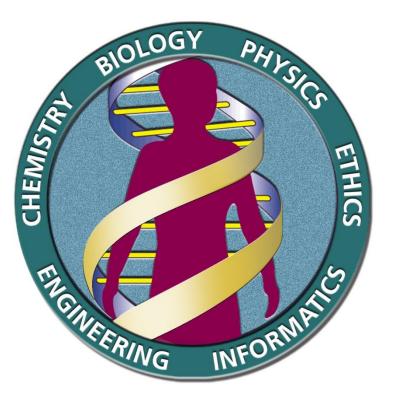
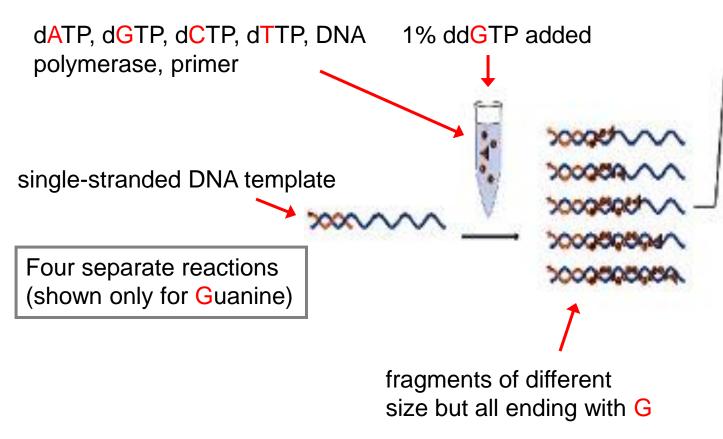
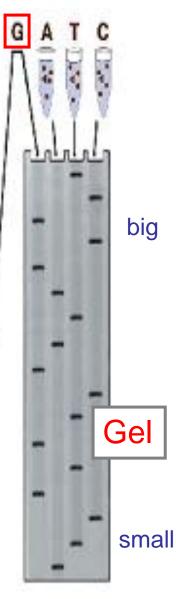

Discovering the buildup of the Human Genome


U. Menzel, Berlin 2009-09-10

We used to think our fate was in our stars. Now we know, in large measure, our fate is in our genes. *James Watson, 1989*

Human Genome Project




- Institute of Molecular Biotechnology (IMB) Jena
- DNA sequence of human Chr21, Chr8, ChrX (HUGO)
- Shotgun sequencing strategy
- Sanger sequencing (chain termination)

Human Genome Organisation

Sanger Sequencing:

Chain termination

5'-GAATGTCCTTTCTCTAAGTCCTAAGTCCTCCG 3'-GGAGACTTACAGGAAAGAGATTCAGGATTCAGGAGGCCTACCATGAAGATCAAG-5'

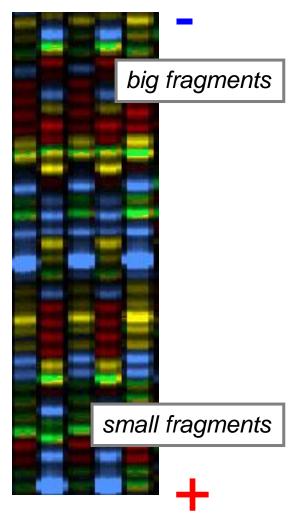
5'-GAATGTCCTTTCTCTAAGTCCTAAGTCCTCCGG

3'-GGAGACTTACAGGAAAGAGATTCAGGATTCAGGAGGCCTACCATGAAGATCAAG-5'

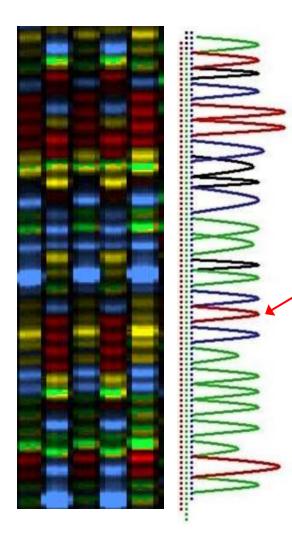
5'-GAATGTCCTTTCTCTAAGTCCTAAGTCCTCCGGAT**G** 3'-GGAGACTTACAGGAAAGAGATTCAGGATTCAGGAGGCCTACCATGAAGATCAAG-5'

5'-GAATGTCCTTTCTCTAAGTCCTAAGTCCTCCGGATGG 3'-GGAGACTTACAGGAAAGAGATTCAGGATTCAGGAGGCCTACCATGAAGATCAAG-5'

5'-GAATGTCCTTTCTCTAAGTCCTAAGTCCTCCGGATGGTACTTCTAG 3'-GGAGACTTACAGGAAAGAGATTCAGGATTCAGGAGGCCTACCATGAAGATCAAG-5'

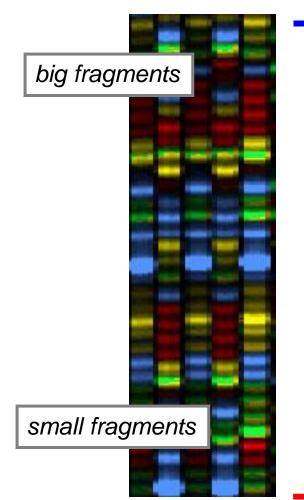

fragments of different length all ending with Guanine

Sequencing


- <u>Shotgun</u>: fragment target-DNA randomly
- <u>Synthesis</u>: produce fractions of the fragment with different length using color-labeled ddNTPs
- <u>Gel-electrophoresis</u>: size-separate fractions by running them through a gel (resolution=1nt)

Gel

Chromatogram

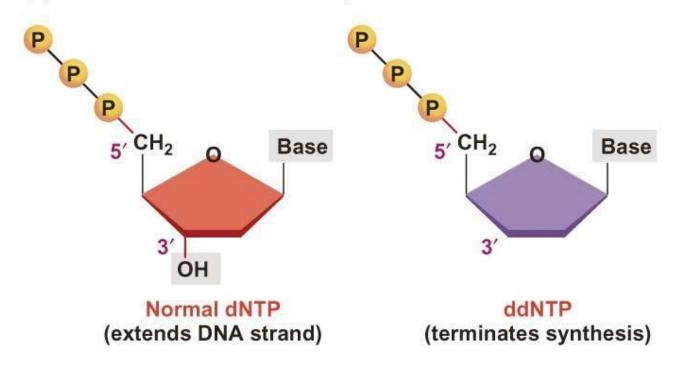

Reading out the flourescent signal yields one chromatogram (trace file) for each lane.

U. Menzel, Berlin 2009-09-10

Dye-terminator sequencing

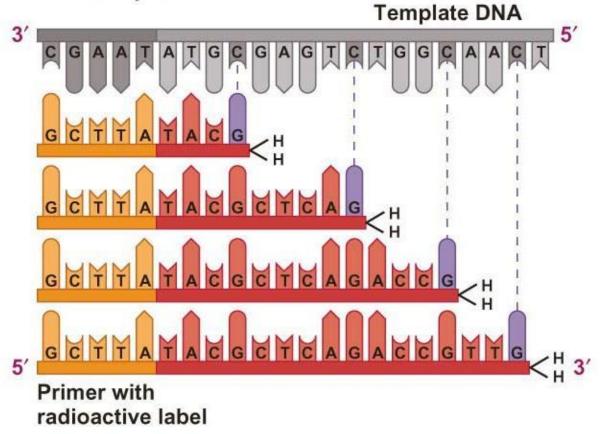
Gel

- labelling of the four chain terminator ddNTPs with fluorescent dyes
- permits sequencing in a single reaction, rather than four reactions



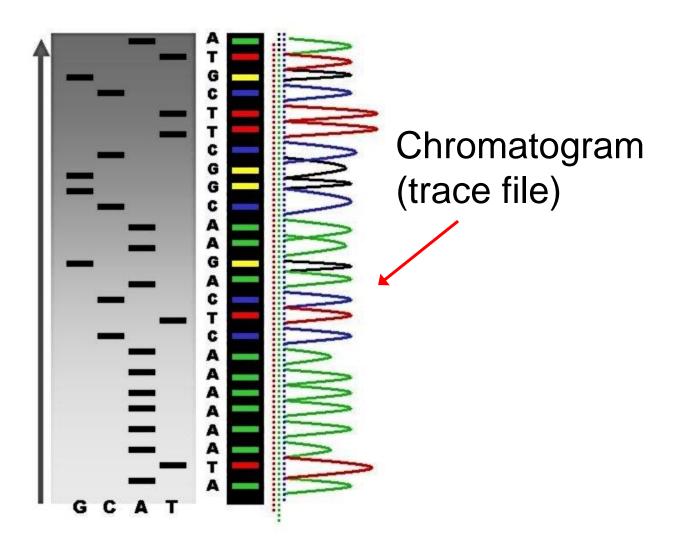
Chain termination method (Sanger)

- DNA sample is divided into 4 sequencing reactions, each containing:
 - the single-stranded DNA template
 - the 4 standard deoxynucleotides (dATP, dGTP, dCTP, dTTP),
 - DNA polymerase, DNA primer.
- *One* of the 4 ddNTPs added to each reaction (in low concentration):
 - ddNTP terminates the chain
 - \rightarrow one reaction ends with A, one with C, one with G, one with T
 - the fragments in each reaction are separated by size by gel electrophoresis (with a resolution of 1 bp !)

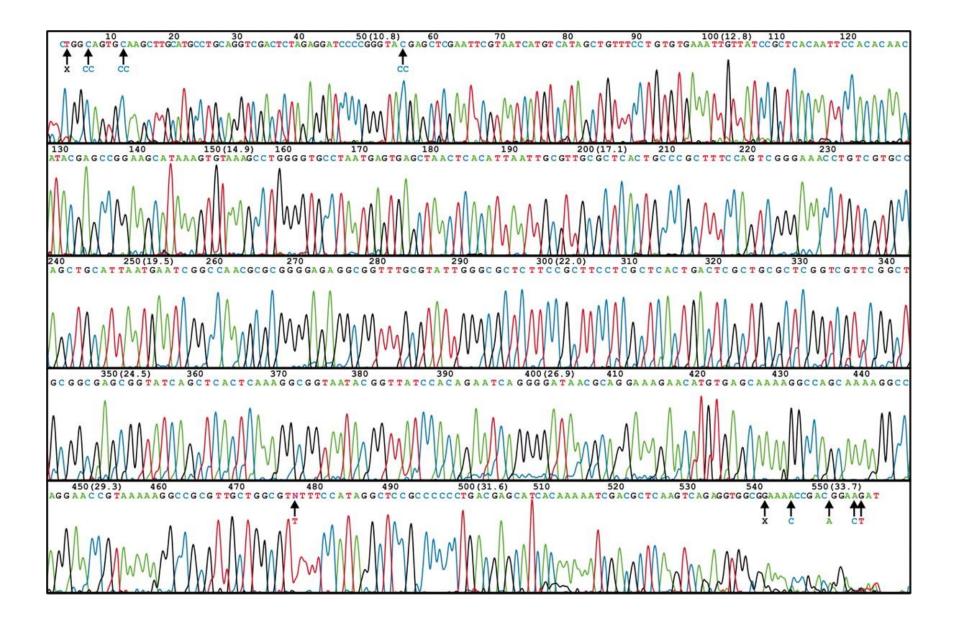

Chain termination method

(a) ddNTPs terminate DNA synthesis.

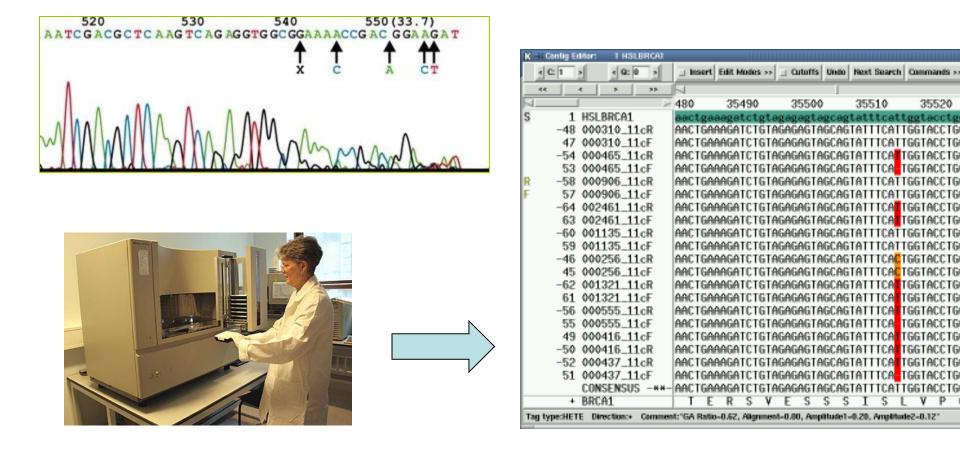
Chain termination method

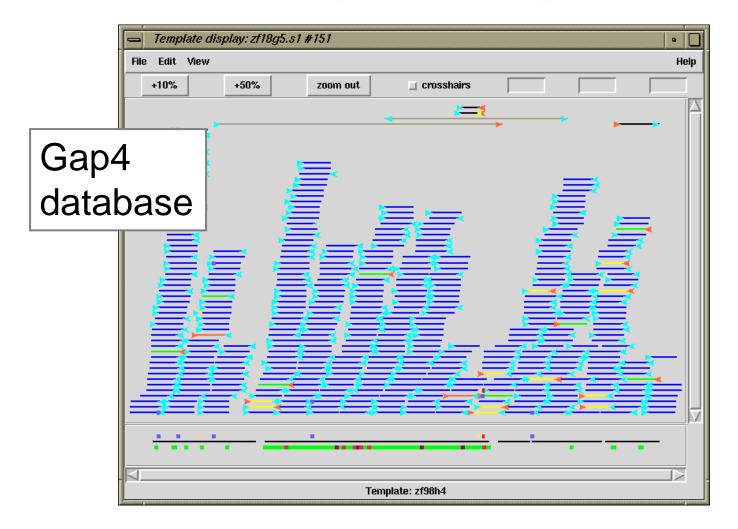

(b) Using ddNTPs, daughter strands of different length can be produced.

Gel-electrophoresis


fragments labeled with dyes

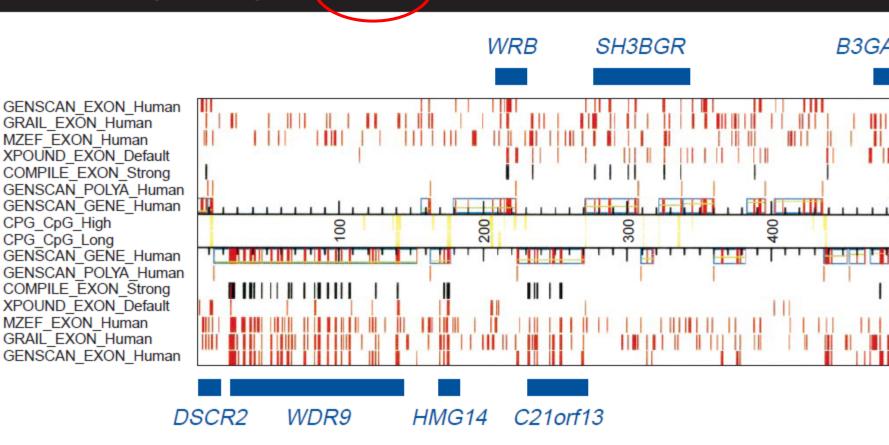
read out the fluorescense


High througput



High-throughput data-mining

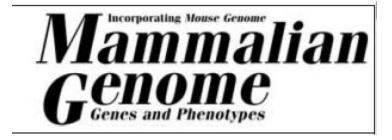
Base calling \rightarrow Base accuracy calculation \rightarrow Quality clipping \rightarrow Vector Removal \rightarrow Repeat masking \rightarrow ... next slides


Assembling the fragments

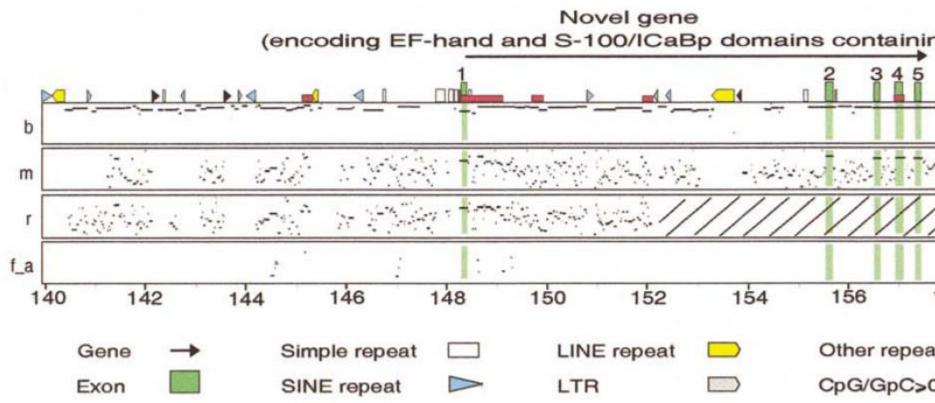
the DNA sequence of the overlapping pieces must be concordant

Annotation of the sequence

FIGURE 2. Graphical output of RUMMAGE


Each row represents the hits of one single program. The number of kilobases are shown in the centre. Because of the clustering of h detected easily. For each hit, detailed information is available by a mouse click. Furthermore, the user can zoom in on any desired p Gene names and blue bars are not shown by RUMMAGE and were added to emphasize the clusters of hits.

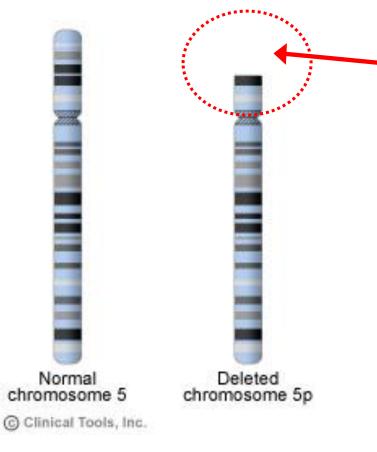
Sequencing and multiple species comparison


Strong conservation of the human *NF2* locus based on sequence comparison in five species

Caisa M. Hansson,¹ Haider Ali,¹ Carl E.G. Bruder,^{1,*} Ingegerd Fransson,² Sindy Kluge,¹ Björn Andersson,³ Bruce A. Roe,⁴ Uwe Menzel,¹ Jan P. Dumanski¹

 ¹Department of Genetics and Pathology, Rudbeck Laboratory, 3rd floor, Dag Hammarskjöds väg 20, Uppsala University, 751 85 Uppsala, Sweden
 ²Department of Molecular Medicine, CMM Building L8:00, Karolinska Hospital, 171 76 Stockholm, Sweden
 ³Center for Genomics and Bioinformatics, Karolinska Institutet, Berzelius väg 35, S-171 77 Stockholm, Sweden
 ⁴Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA

Comparison of five species


Fig. 1. A *P*ercentage *I*dentity *P*lot (PIP), produced by MultiPipMaker, shows the evolutionary c nomic sequences from human (reference), baboon (b), mouse (m), rat (r), and pufferfish *f_neurofibr* human *NF2* gene spans a region between positions 31.5 and 126.5 kb. Human, baboon, mouse and locus are flanked by exon 1 of *NIPSNAP1* gene and a novel gene, encoding EF-hand and S-100/IC

Copy Number Aberrations in Genomes

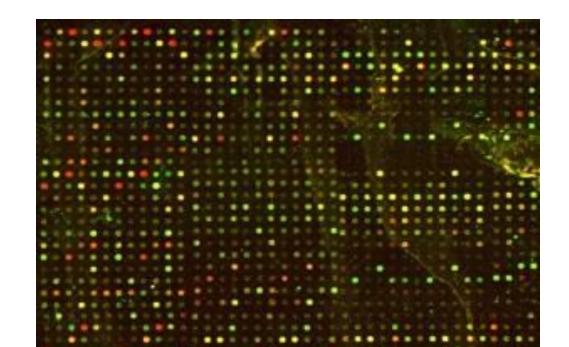
K ((7) ?) " R н i ku X/Y

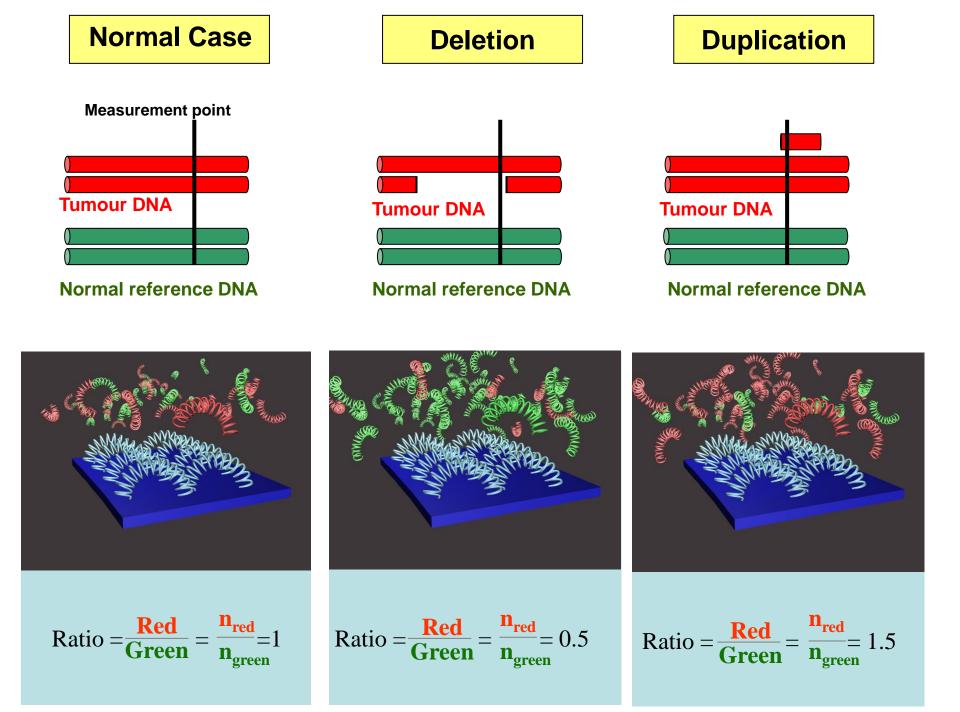
two copies in each (somatic) cell

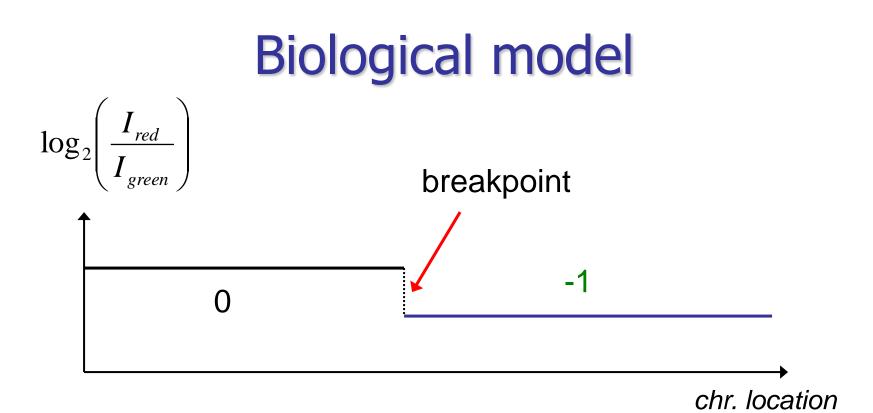
Copy Number Aberrations in Genomes

- One or both copies can get lost (deletion)
- Additional copies (gain, amplification)
- <u>Size:</u> 1 bp few Mbp, (whole chromosome trisomy 21)
- Important in cancer development (TSG, Oncogenes)

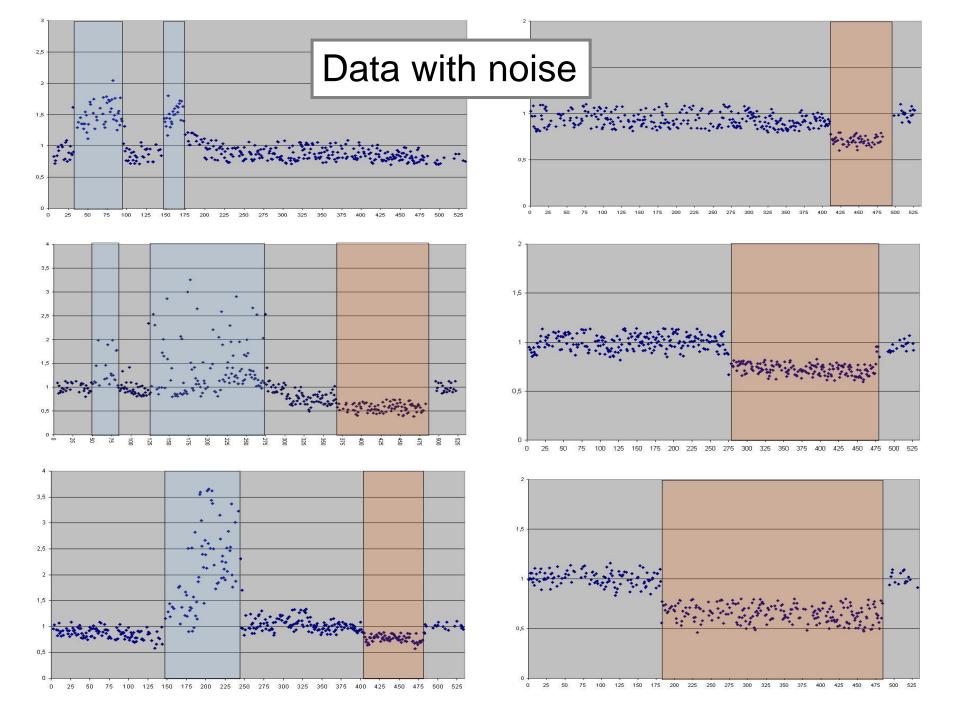
Method: Array CGH

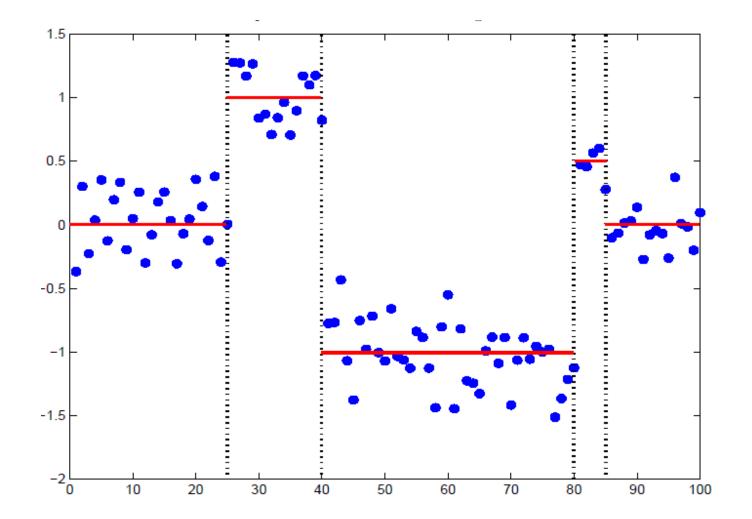

- Comparative Genomic Hybridization
- Compare the genomes of two individuals or of two different tissues of the same individual (e.g. normal tissue – tumor tissue)

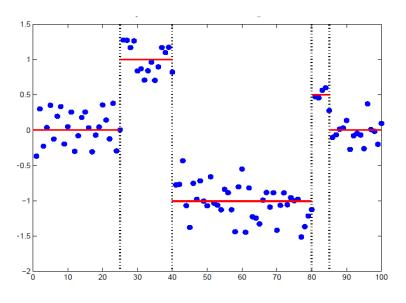

Metaphase-CGH and Array-CGH



Array CGH


- The red and green intensities are measured in each spot of the array.
- The intensity ratio allows estimation of the relative copy number of test and reference DNA.
- 2 copies of both test + reference DNA \rightarrow R=1, log₂R=0




<u>Assumption:</u> Genomic rearrangements lead to gain or loss of contiguous segments of the genome.

Segmentation

Segmentation:

- (Smoothing \rightarrow) thresholds
 - based on the variability
 - Weiss 2003
- Normal mixture models
 - e.g. 3 Gaussian components: deletion, normal, gain
 - Hodgson 2001
- Clustering
 - Autio (2003)

BIOINFORMATICS ORIGINAL PAPER

Gene expression

Evaluating the performance of microarray segmentation algorithms

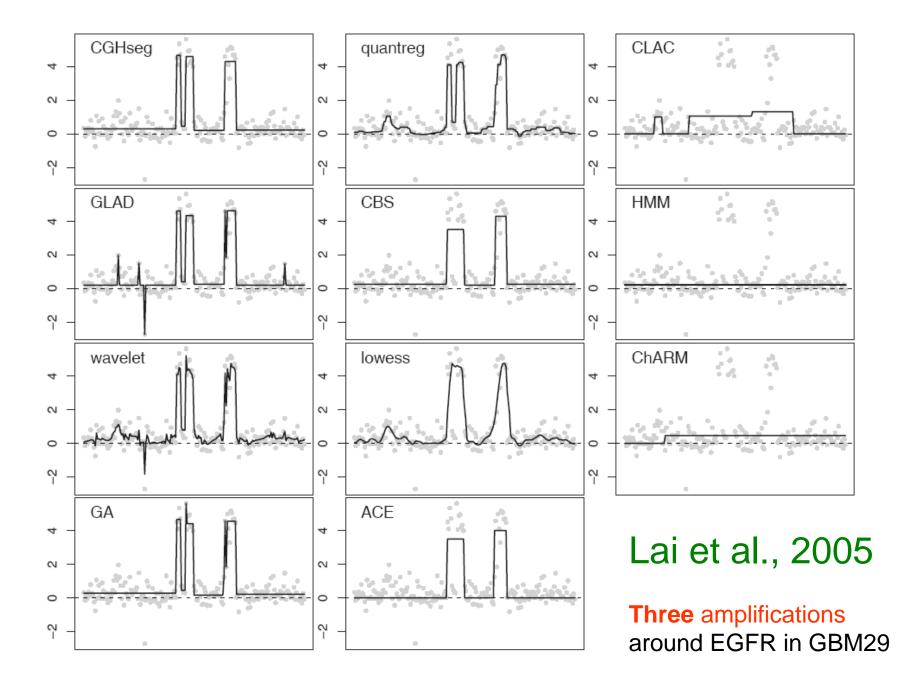
Antti Lehmussola*, Pekka Ruusuvuori and Olli Yli-Harja

Institute of Signal Processing, Tampere University of Technology, PO Box 553, 33101 Tampere, Finland

Received on July 21, 2006; revised on September 13, 2006; accepted on September 30, 2006

Algorithm	Description
Fixed circle (FC) (Eisen, 1999)	Circular mask with constant radius
Adaptive circle (AC) (Buhler et al., 2000)	Circular mask with independently estimated radius for each spot
Seeded region growing (SRG) (Yang et al., 2002)	Segmentation with seeded region growing segmentation algorithm
Mann-Whitney (MW) (Chen et al., 1997)	Computing segmentation threshold iteratively with Mann-Whitney test
k-means (KM) (Bozinov and Rahnenführer, 2002)	k-means clustering of pixels
Hybrid k-means (HKM) (Rahnenführer and Bozinov, 2004)	k-means clustering of pixels and removing outliers with mask matching
Markov random field (MRF) (Demirkaya et al., 2005)	MRF modeling of pixels
Model-based segmentation (MBS) (Li et al., 2005)	Model-based clustering of pixels and extraction of connected components
Matarray (MA) (Wang et al., 2001)	Iterative modification of target mask based on spatial and intensity information

k-means algorithm best (simulated data)


Genetics and population analysis

Comparative analysis of algorithms for identifying amplifications and deletions in array CGH data

Weil R. Lai¹, Mark D. Johnson², Raju Kucherlapati¹ and Peter J. Park^{1,3,*}

¹Harvard-Partners Center for Genetics and Genomics, 77 Avenue Louis Pasteur, Boston, MA 02115, USA, ²Department of Neurological Surgery, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA and ³Children's Hospital Informatics Program, 300 Longwood Ave, Boston, MA 02115, USA

Name	Reference	Method	Software
CGHseg	Picard et al. (2005)	CGH Segmentation	CGHseg, Nov, 2004 (MATLAB)
Quantreg	Eilers and de Menezes (2005)	Quantile Smoothing	quantreg, v3.76 (R)*
CLAC	Wang et al. (2005)	Clustering Along Chromosomes	CLAC, v0.1-1 (R)
GLAD	Hupe et al. (2004)	Adaptive Weights Smoothing	GLAD, v1.0.2 (R)
CBS	Olshen et al. (2004)	Circular Binary Segmentation	DNAcopy, v1.1.1 (R)
HMM	Fridlyand et al. (2004)	Hidden Markov Model	aCGH, v1.1.4 (R)
Wavelet	Hsu et al. (2005)	Maximal Overlap Discrete Wavelet Transform	waveslim, v1.4 (R)*
Lowess		Locally Weighted Regression	stats, v2.0.1 (R)*
ChARM	Myers et al. (2004)	Chromosomal Aberration Region Miner	ChARM, v1.6 (JAVA)
GA	Jong et al. (2003)	Genetic Local Search	aCGHSmooth, Nov, 2004 (exec)
ACE	Lingjaerde et al. (2005)	Analysis of Copy Errors	CGH-Explorer, v2.3 (JAVA)

Bioconductor Task View: DNACopyNumber

Subview of

Packages in view

open source software for analysis of genomic dataprimarily based on the R programming language

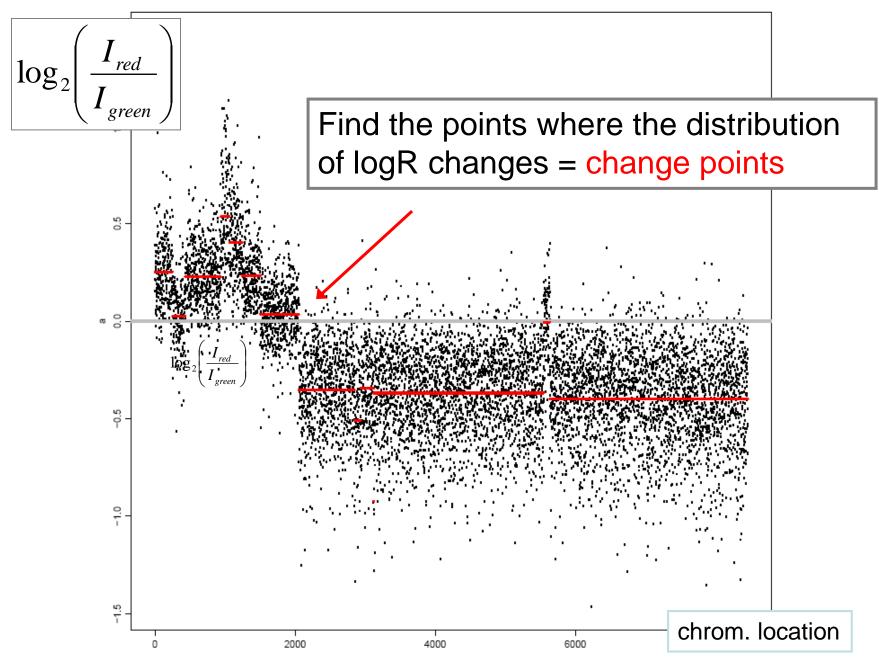
Package	Maintainer	Title	
<u>aCGH</u>	Jane Fridlyand	Classes and functions for Array Comparative Genomic Hybridization data.	
beadarraySN	Jan Oosting	Normalization and reporting of Illumina SNP bead arrays	
CGHbase	Sjoerd Vosse	CGHbase: Base functions and classes for arrayCGH data analysis.	
CGHcall	Sjoerd Vosse	Calling aberrations for array CGH tumor profiles.	
CGHregions	Mark van de Wiel	Dimension Reduction for Array CGH Data with Minimal Information Loss.	
DNAcopy	Venkatraman E. Seshan	DNA copy number data analysis	
GLAD	Philippe Hupe	Gain and Loss Analysis of DNA	
ITALICS	Guillem Rigaill	ITALICS	
<u>KCsmart</u>	Jorma de Ronde	Multi sample aCGH analysis package using kernel convolution	
MANOR	Pierre Neuvial	CGH Micro-Array NORmalization	
quantsmooth	Jan Oosting	Quantile smoothing and genomic visualization of array data	
reb	Karl J. Dykema	Regional Expression Biases	
SIM	Marten Boetzer	Integrated Analysis of gene expression and copynumber data	
(<u>SMAP</u>)	Robin Andersson	A Segmental Maximum A Posteriori Approach to Array-CGH Copy Number Profiling	
snapCGH	Thomas Hardcastle	Segmentation, normalisation and processing of aCGH data.	
SNPchip	Robert Scharpf	Classes and Methods for high throughput SNP chip data	
<u>VanillaICE</u>	Robert Scharpf	Methods for fitting Hidden Markov Models to SNP chip data	

http://bioconductor.org/packages/2.3/DNACopyNumber.html

Segmentation: CBS

Circular binary segmentation for the analysis of array-based DNA copy number data

ADAM B. OLSHEN, E. S. VENKATRAMAN


Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA olshena@mskcc.org

ROBERT LUCITO, MICHAEL WIGLER

Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA

SUMMARY

DNA sequence copy number is the number of copies of DNA at a region of a genome. Cancer progression often involves alterations in DNA copy number. Newly developed microarray technologies enable simultaneous measurement of copy number at thousands of sites in a genome. We have developed a modification of binary segmentation, which we call *circular binary segmentation*, to translate noisy intensity measurements into regions of equal copy number. The method is evaluated by simulation and is demonstrated on cell line data with known copy number alterations and on a breast cancer cell line data set.

Binary Segmentation (Sen & Srivastava, 1975)

Likelihood ratio statistics

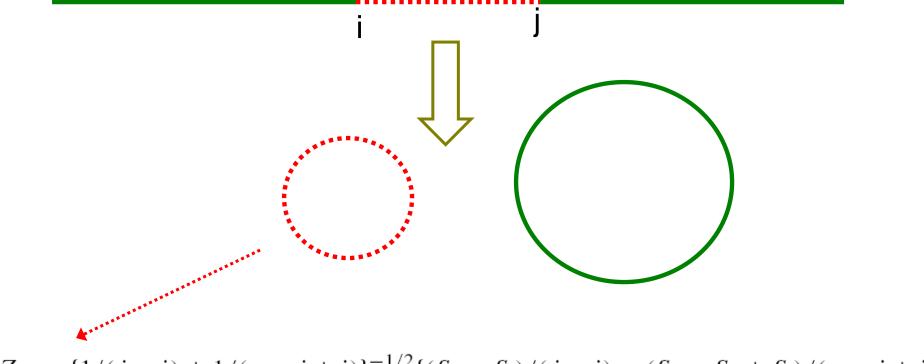
 H_0 : no change of the (normal-) distribution

 $S_i = X_1 + \dots + X_i, 1 \le i \le n$ partial sums of logR $Z_i = \{1/i + 1/(n-i)\}^{-1/2} \{S_i/i - (S_n - S_i)/(n-i)\}$

 H_0 is rejected if max Z_i gets too large \rightarrow change point at i

statistics used

Likelihood ratio statistics


$$H_0: \quad \theta = \theta_0,$$

$$H_1: \quad \theta = \theta_1.$$

$$\Lambda = \frac{L(x \mid \theta_0)}{L(x \mid \theta_1)}$$

statistic

If $\Lambda > c$, do not reject H_0 If $\Lambda < c$, reject H_0

Circular Binary Segmentation

 $Z_{ij} = \{1/(j-i) + 1/(n-j+i)\}^{-1/2}\{(S_j - S_i)/(j-i) - (S_n - S_j + S_i)/(n-j+i)\}$

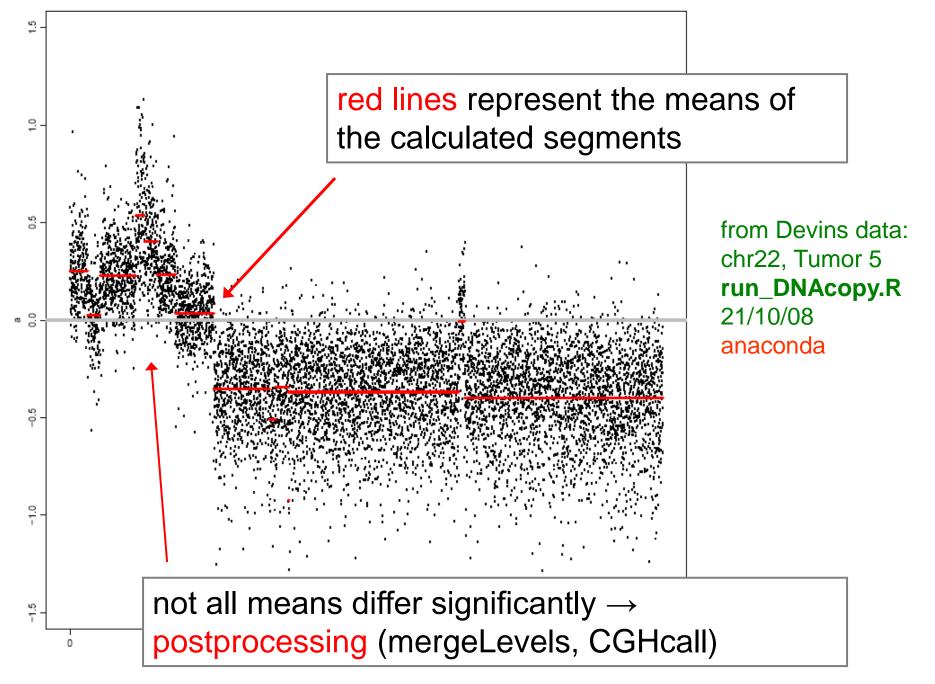
Tests if the arc from i to j has a mean which is different from the mean of the **complement** (reject H_0 if max $|Z_{ii}|$ too big).

run_CBS runs *DNAcopy* from the Bioconductor package (R)

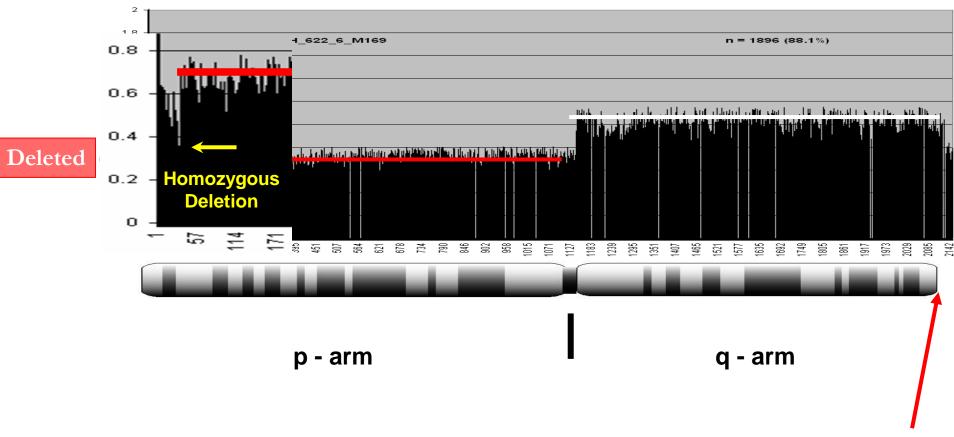
CBS

DNAcopy

DNA copy number data analysis


Segments DNA copy number data using circular binary segmentation to detect regions with abnormal copy number

Author Venkatraman E. Seshan, Adam Olshen Maintainer Venkatraman E. Seshan


To install this package, start R and enter:

```
source("http://bioconductor.org/biocLite.R")
biocLite("DNAcopy")
```

http://www.bioconductor.org/packages/2.3/bioc/html/DNAcopy.html

Chromosome 1 array analysis of one tumor (meningioma from a male patient)

Chromosome X - controls

CBS (DNAcopy)

• ... does not make "calls"

CGHcall

BIOINFORMATICS APPLICATIONS NOTE

Vol. 23 no. 7 2007, pages 892–894 doi:10.1093/bioinformatics/btm030

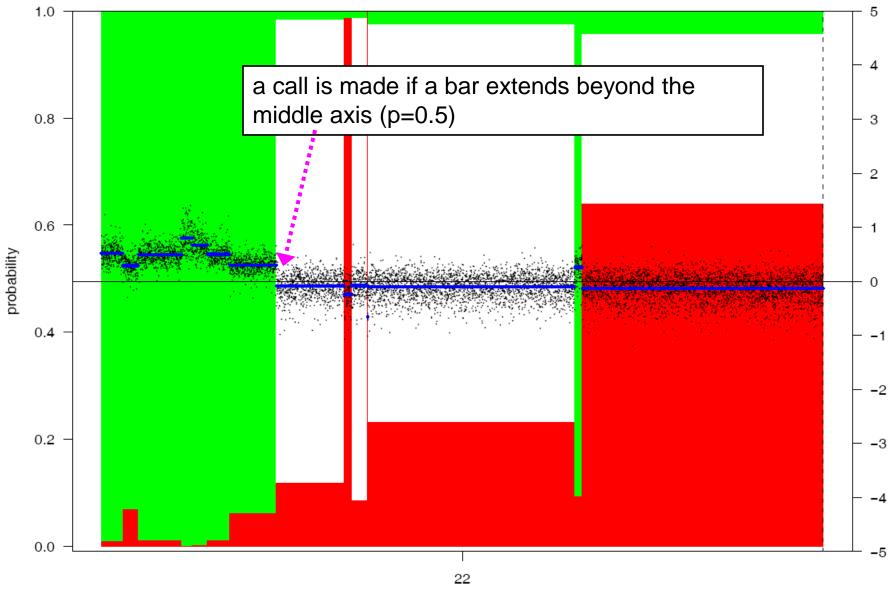
Genome analysis

CGHcall: calling aberrations for array CGH tumor profiles

Mark A. van de Wiel^{1,2,3,*}, Kyung In Kim⁴, Sjoerd J. Vosse¹, Wessel N. van Wieringen³, Saskia M. Wilting¹ and Bauke Ylstra¹

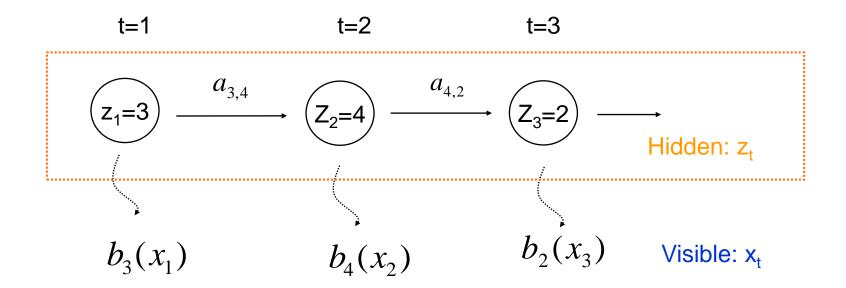
¹Department of Pathology and ²Department of Biostatistics, VU University Medical Center, PO Box 7057, 1007MB Amsterdam, ³Department of Mathematics, Vrije Universiteit, Amsterdam and ⁴Department of Mathematics, Technische Universiteit, Eindhoven, The Netherlands

Received on December 15, 2006; revised on January 23, 2007; accepted on January 23, 2007


CGHcall

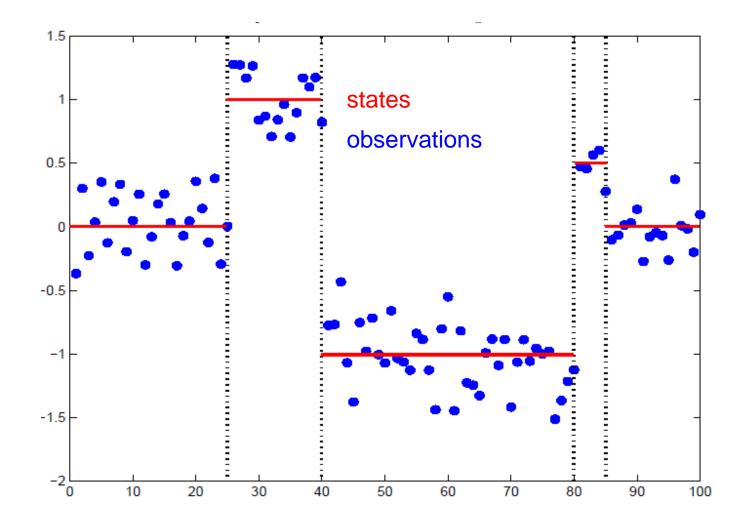
Our algorithm, named CGHcall, combines strong concepts of previously developed methods. First, we used the segmentation results of DNAcopy (also known as CBS) (Olshen et al., 2004), which was shown to be one of the strongest segmentation algorithms (Willenbrock and Fridlyand, 2005). Secondly, one cannot expect loss, normal and gain levels to be uniform over all data, so we allow fluctuations by using random effects (Engler et al., 2006). Finally, as in (Picard et al., 2005), we combine the segmentation results with a mixture model to obtain the most likely classification per segment rather than per individual clone.

run_CGHcall.R


Tumor5...Normal5.Log2.Rsub.Rref.

log2 ratio

anaconda:/nfs/1d/menzel/TEST_DNAcopy/Sample_550K_Paired_LogR_chr22_nos4.txt.sample4.pdf


Hidden Markov Model

$$P(x_1, x_2, \dots, z_1, z_2, \dots | \theta) = p(z_1) \cdot b_{z_1}(x_1) \cdot a_{z_1, z_2} \cdot b_{z_2}(x_2) \cdot a_{z_2, z_3} \cdot \dots$$
$$P(x, z | \theta) = p(z_1) \cdot \prod_{i=1}^T b_{z_i}(x_i) \cdot a_{z_i, z_{i+1}}$$

CDHMM

Continuous Density Hidden Markov Model

SMAP

Genome analysis

A segmental maximum a posteriori approach to genome-wide copy number profiling

Robin Andersson¹, Carl E. G. Bruder², Arkadiusz Piotrowski², Uwe Menzel³, Helena Nord³, Johanna Sandgren⁴, Torgeir R. Hvidsten¹, Teresita Diaz de Ståhl³, Jan P. Dumanski^{2,3} and Jan Komorowski^{1,5,*}

¹The Linnaeus Centre for Bioinformatics, Uppsala University, 751 24 Uppsala, Sweden, ²Department of Genetics, University of Alabama at Birmingham, Birmingham AL 35294-0024, USA, ³Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, ⁴Department of Surgical Sciences, Uppsala University Hospital, 751 85 Uppsala, Sweden and ⁵Interdisciplinary Center for Mathematical and Computational Modelling, Warsaw University, 02-106 Warsaw, Poland

Find a θ that maximizes $p(\theta, z|x)$:

$$\theta = \underset{\theta}{\operatorname{argmax}} \max_{z} p(\theta, z | x) = \underset{\theta}{\operatorname{argmax}} \max_{z} p(x, z | \theta) \cdot p(\theta)$$

Alternate maximization over z and θ yields a sequence of non-decreasing $p(\theta, z | x)$

Maximum likelihood estimation – MAP

 $f(x \mid \theta)$ be the probability of x when the underlying population parameter is θ .

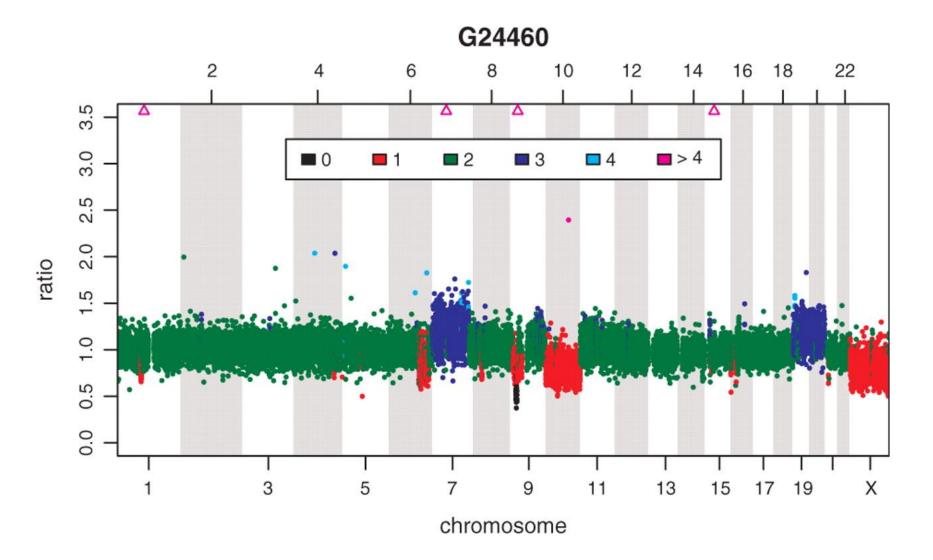
$$\begin{split} \theta &\mapsto f(x|\theta) & \text{ML function} \\ \hat{\theta}_{\text{ML}}(x) &= \arg \max_{\theta} f(x|\theta) & \text{ML estimation of } \mathbb{P} \\ & \text{MAP estimation of } \mathbb{P} : \\ \hat{\theta}_{\text{MAP}}(x) &= \arg \max_{\theta} \frac{f(x|\theta) g(\theta)}{\int_{\Theta} f(x|\theta') g(\theta') d\theta'} = \arg \max_{\theta} f(x|\theta) g(\theta). \end{split}$$

If the prior is flat, i.e. $g(\mathbb{P})=C \rightarrow MAP$ estimate is the same as the ML estimation

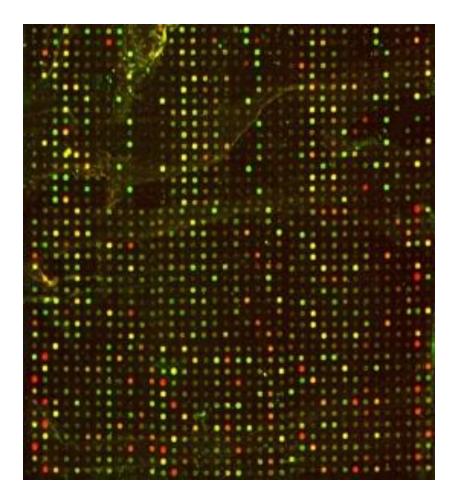
Segmental MAP

$$p(\theta, z|x) = \frac{p(z, \theta, x)}{p(x)} = \frac{p(z, x|\theta) \cdot p(\theta)}{p(x)}$$

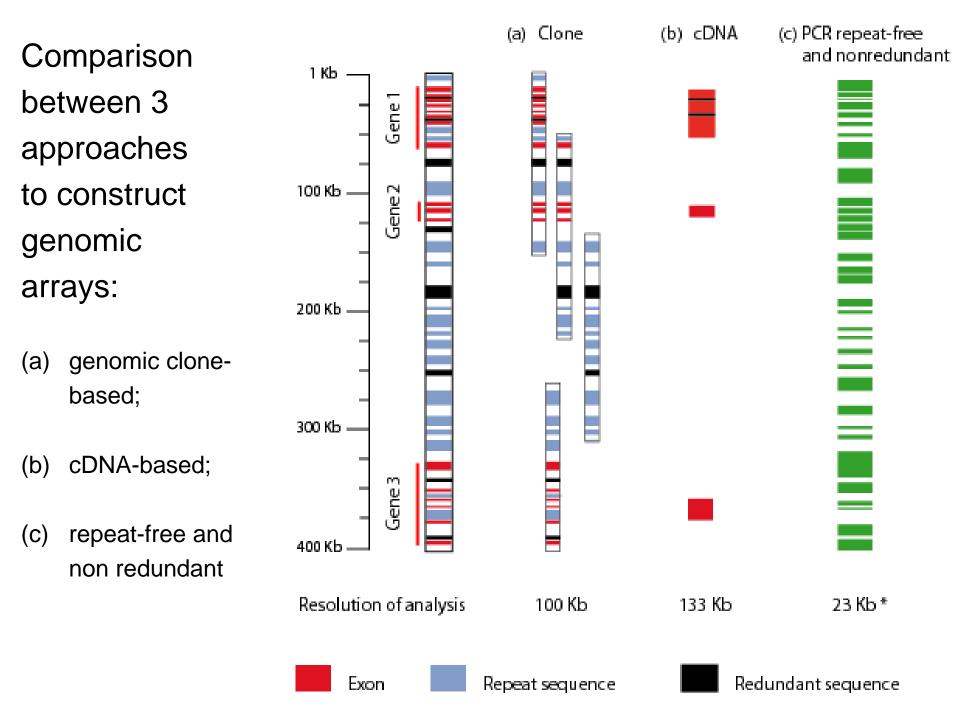
Find a θ that maximizes $p(\theta, z | x)$:


$$\theta = \operatorname*{argmax}_{\theta} \max_{z} p(\theta, z | x) = \operatorname*{argmax}_{\theta} \max_{z} p(x, z | \theta) \cdot p(\theta)$$

Alternate maximization over z and θ yields a sequence of non-decreasing $p(\theta, z | x)$:


proof!

$$z_{t+1} = \underset{z}{\operatorname{argmax}} p(x, z | \theta_t) \quad \text{Viterbi}$$
$$\theta_{t+1} = \underset{\theta}{\operatorname{argmax}} p(x, z_{t+1} | \theta) \cdot p(\theta)$$


SMAP - Result

PCR-based arrays

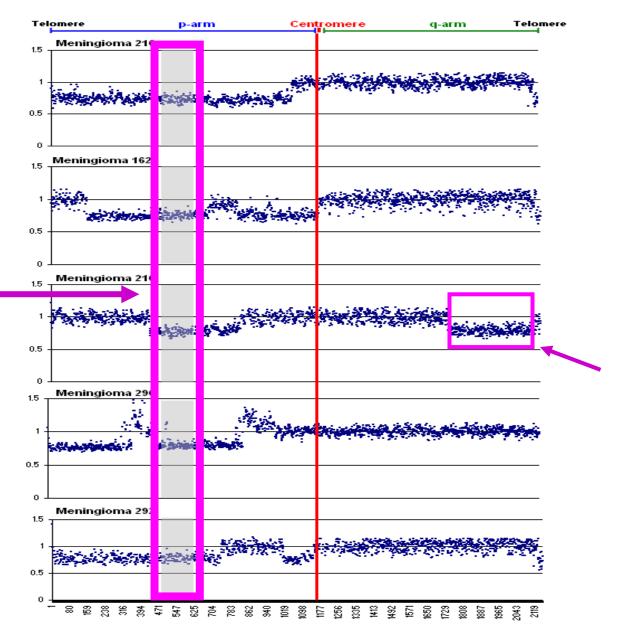
(Pools of) PCR products

Paste a sequence (in FASTA format) into the text window below (less than 100 kb):

"Allocator"

automaticly, find repeat-free and non-redundant regions in a certain chromosomal region and define unique primer pairs on it

102400 characters left			
OR upload a sequence file:			
		Browse_	
Sequence is pre-masked			
Blast Parameters			
Use Blast algorithm:	Standard	BLAST W=11 E=1.0 👻	
Minimum match percentage:	80		
Minimum match length:	50		
Primer Design Parameters			
Minimum product length:	100	Maximum product length:	1000
Number of primer pairs per region:	5	Maximum 3'-end stability:	6.0
Goget it Forget it			


Authors: <u>Uwe Menzel</u> and <u>Gintautas Grigelionis</u>

Clinically relevant findings

- find changes that are characteristic for a certain kind of tumor
- phenotype
 genotype
- identify genes in this deleted regions: TSG/Oncogene
- pathway analysis (GO, KEGG)

Six meningiomas analyzed on chr. 1 array

Analysis of 1p will allow to define a small overlapping region of deletions

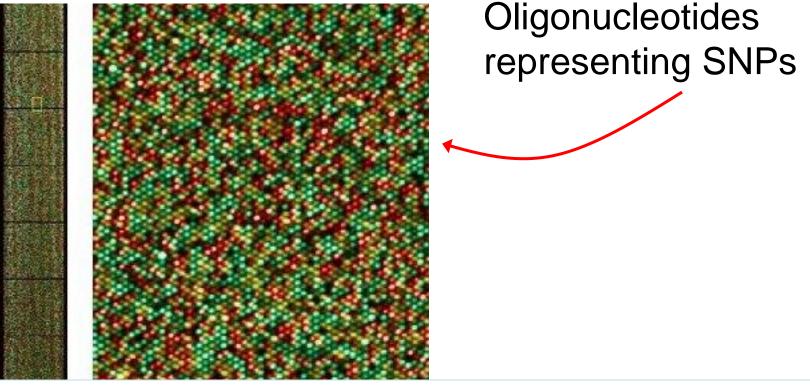
Deletions on 1q have not been described so far in meningioma

"SNP-CGH"

High-resolution genomic profiling of chromosomal aberrations using Infinium whole-genome genotyping

Daniel A. Peiffer, Jennie M. Le, Frank J. Steemers, et al.

Genome Res. 2006 16: 1136-1148; originally published online Aug 9, 2006; Access the most recent version at doi:10.1101/gr.5402306


High-resolution genomic profiling of chromosomal aberrations.pdf

"SNP-CGH"

- simultaneous measurement of both signal intensity and allelic composition
- detect both copy number changes and copy-neutral loss-of-heterozygosity (LOH)
- Infinium whole-genome genotyping (WGG) BeadChips (Illumina)

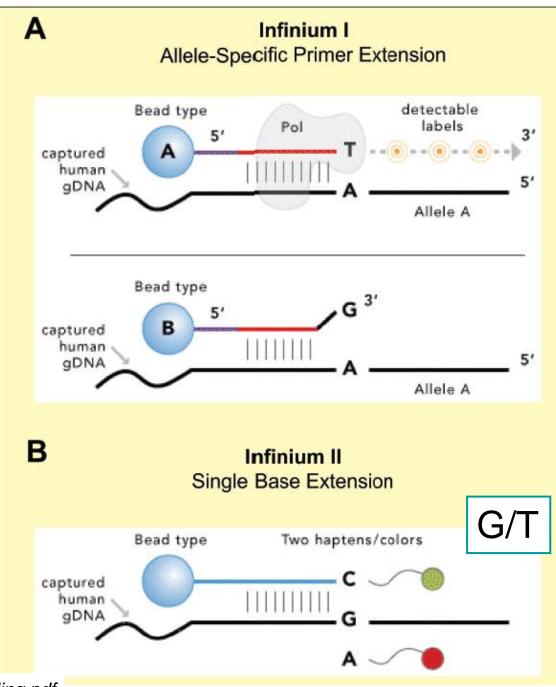
- 610,000 rationally selected tag SNPs per sample
- captures the majority of known variations (haplotypes) (based on HapMap¹ release 23)

human610quad beadchip

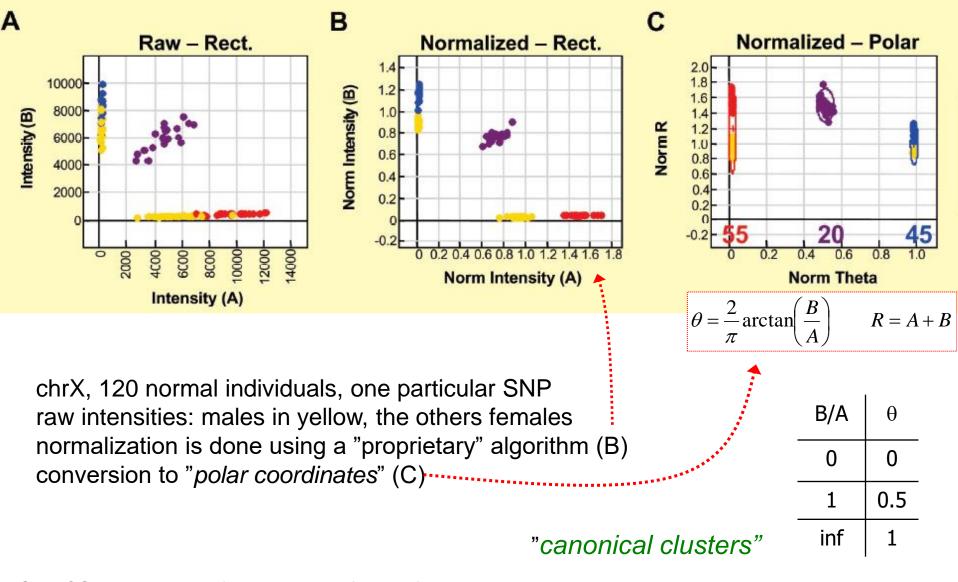
HUMAN610-QUAD V1 CONTENT

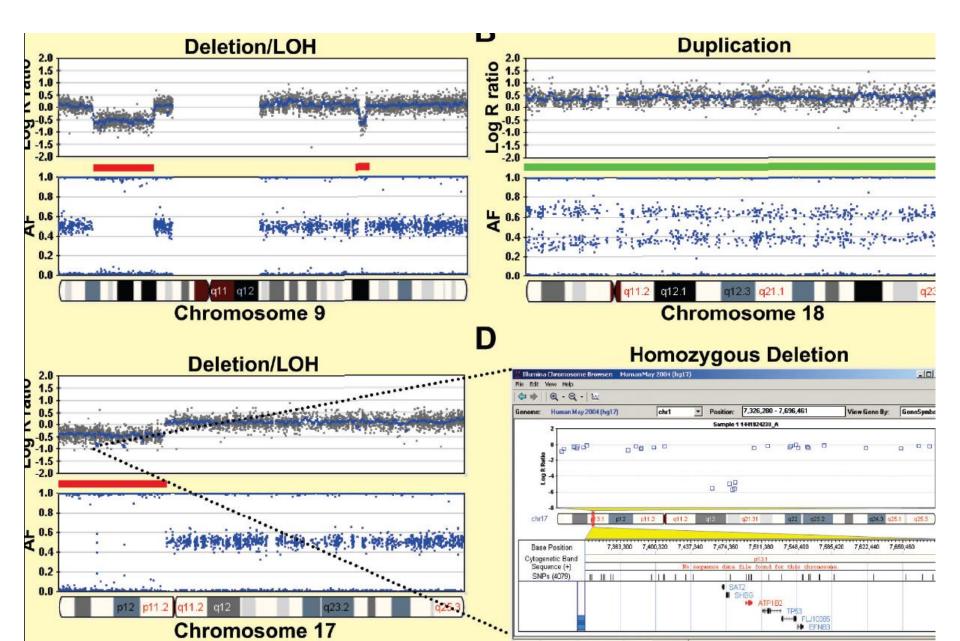
human610-	Number of Markers per Sample	620,901
	Number of Samples per BeadChip	4
quad beadchip	DNA Input Requirement (per sample)	200 ng
	Genomic Coverage	
	CEU (Mean/Median/ $r^2 > 0.8$)	0.93/1.0/0.89
	CHB+JPT	0.91/1.0/0.86
Genotyping &	YRI	0.75/0.88/0.58
CNV analysis	Minor Allele Frequency*	
	CEU (Mean/Median)	0.23/0.23
	CHB+JPT	0.21/0.20
	YRI	0.22/0.20
	Spacing (kb)	
	(Mean/Median)	4.7/2.7
	90th %ile Largest Gap	11.0
	Marker Categories	
	Markers Within 10kb of a RefSeq Gene	309,978
	Non-Synonymous SNPs**	7,577
http://www.illumina.com/pages.ilmn?ID=248	NHC [†] /ADME [‡] /Indel SNPs	5,728/8,189/0
	Sex Chromosome (X/Y/PAR Loci)	17,681/2,160/452
	Mitochondrial SNPs	138
	CNV Coverage	
	Number of DGV [§] Regions Represented	3,938
	Number of Markers in DGV Regions	184,064
	Average Markers per Region	37.7
	Targets Novel CNV Regions (~9K)	Yes

human610-quad beadchip

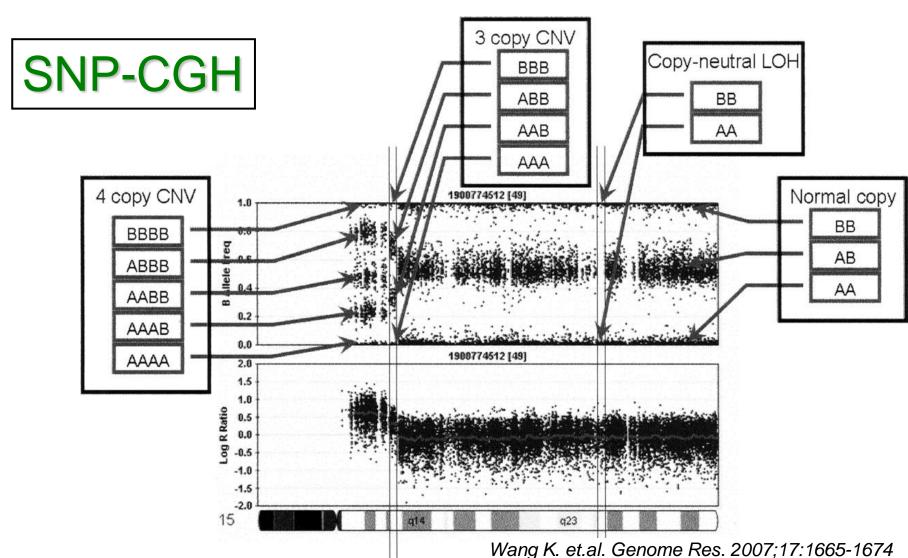

- 610,000 rationally selected tag SNPs and markers per sample
- captures the majority of known variations (haplotypes) (based on HapMap¹ release 23)
- detection of both known and novel CNV regions

¹http://www.hapmap.org/whatishapmap.html.en


What Ballele frequency


SNP-CGH technologies for genomic profiling.pdf

Calculation of the BAF


SNP-CGH technologies for genomic profiling.pdf

Both LRR and BAF used to interprete data

Both LRR¹ and BAF² can be used to determine copy number

 ${}^{1}LRR = Log R ratio$ ${}^{2}BAF = B$ -allele frequency

PennCNV Paper

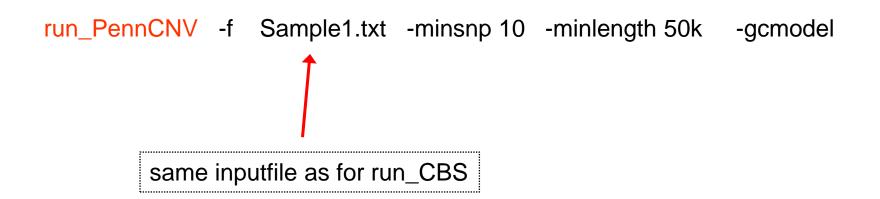
PennCNV: An integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data

Kai Wang, Mingyao Li, Dexter Hadley, Rui Liu, Joseph Glessner, Struan F.A. Grant, Hakon Hakonarson and Maja Bucan

Genome Res. 2007 17: 1665-1674; originally published online Oct 5, 2007; Access the most recent version at doi:10.1101/gr.6861907

PennCNV

- Detection of CNVs from Illumina (*Infinium*) high-density SNP genotyping data using:
 - total signal intensity
 - allelic intensity ratio at each SNP marker (BAF)
 - pedigree information if available
- kilobase-resolution (~10 Kb)


PennCNV – states of the HMM

Copy no. state	Total copy no.	Description (for autosome)	CNV genotypes
1 2 3 4 5 6	0 1 2 2 3 4	Deletion of two copies Deletion of one copy Normal state Copy-neutral with LOH Single copy duplication Double copy duplication	Null A, B AA, AB, BB AA, BB AAA, AAB, ABB, BBB AAAA, AAAB, AABB, ABBB, BBBB

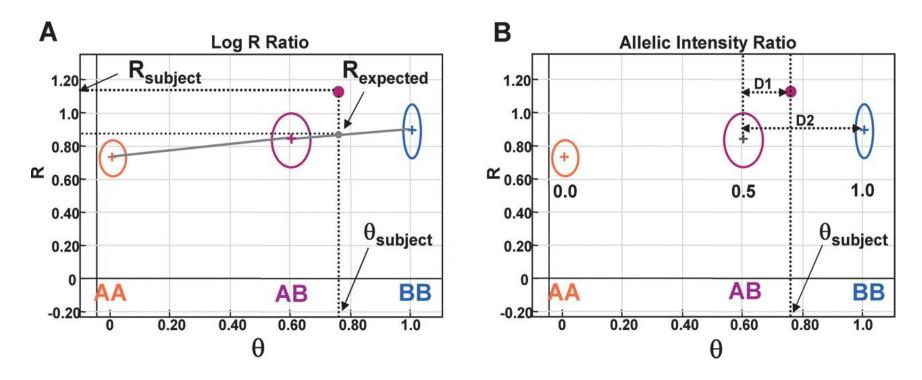
 Table 1. Hidden states, copy numbers, and their descriptions

Allele frequency information included in the states of the HMM

PennCNV implementation

Perl-script: /usr/local/share/BIOSW/run_PennCNV.pl runtime: a few minutes output: Sample1.txt.log Sample1.txt.calls Sample1_PennCNV.gff

Files: PennCNV_in_sample5.txt.gff PennCNV_in_sample5.txt_BAF.gff devin_5_cnv.txt.gff Load Time: 87.89 seconds **ه** • • • Pointer Info: Score: 0.702 Pos: 26,390,123 - 26,390,173 Attr: rs134056 BB logR=-0.7017257 BAF=0.9841304;color 0000FF;url=http://genome.ucsc.edu/cgi-bin/hgTracks?db=hg18&position 1⁴,000,00 15:00000 25,000,00 21,000,00 33,00,00 A5,000,00 400.000 00.000 A10,00,00 A80,00,00 ^{x0,000,00} 22,000,00 22,000,00 24.000,00 25,000,00 28,00,00 29,000,00 30,00,00 32,000,00 34,000,00 35,00,00 380,000,00 31,000,00 380,000,00 A2.000,00 A300000 AA.00.00 1,000,00 ^{1,0,00,00} ^{20,000,00} 22,000,00 29.0000 A0,000,00 A1.0000 20,000,00 chr22 1.134 LRR 0.800 0.400 0.000 -0.400 -0.800 -1.200-1.600 -1.915 sample5 3.000 2.800 CNC=3 2.400 LOH normal 2.000 **CNC** CNC=1 1.600 1.200 0.800 0.400 0.000 PennCNV in sample5.tx BBB-0.900 0.800 Β ABB BAF 0.500 AAB→1 /3 AB 49 0.000 0.200 AAA-


Devin, Tumor 5, chr22 PennCNV results

PennCNV quality assessment

- is done automatically
- identifies low-quality samples from a genotyping experiment
- several types of bad quality, see below

see "Illumina.ppt"

Canonical clusters

The canonical clusters are not specific enough

- clusters have to be defined for each machine
- or paired comparisons must be made

Peiffer D. A. et.al. Genome Res. 2006;16:1136-1148

PennCNV parameters

Optional arguments:	
-v,verbose	use verbose output
-h,help	print help message
-m,man	print complete documentation
train	train optimized HMM model (not recommended)
test	test HMM model to identify CNV
trio	posterior CNV calls for father-mother-offspring trio
quartet	posterior CNV calls for quartet
joint	joint CNV calls for trio (available soon)
summary	generate descriptive summary for signal quality
listfile <file></file>	a list file containing path to files to be processed
output <file></file>	specify output root filename
exclude_heterosom	
hmmfile <file></file>	HMM model file
pfbfile <file></file>	population frequency for B allelel file
cnvfile <file></file>	specify CNV call file for use in family-based CNV calling
wavemodelfile <file:< td=""><td>5 5 ,</td></file:<>	5 5 ,
sample_index <int></int>	
minsnp <int></int>	minimum number of SNPs within CNV (default=3)
minlength <int></int>	minimum length of bp within CNV
minconf <float></float>	minimum confidence score of CNV (experimental feature)
loh	display copy-neutral LOH information (obselete option)
chrx	use chrX-specific treatment
chry	use chrY-specific treatment (not implemented yet!)
fmprior <numbers></numbers>	prior belief on CN state for regions with CNV calls
denovo_rate <float></float>	prior belief on genome-wide de novo event rate
logfile <file></file>	write notification/warningn messages to this file
confidence	calculate confidence for each CNV (experimental feature)
tabout	use tab-delimited output
coordinate_from_in	put get marker coorindate information from signal file (rather than PFB file)

Function: generate CNV calls from high-density SNP genotyping data that contains Log R Ratio and B Allele Frequency for each SNP

Other Programs: QuantiSNP

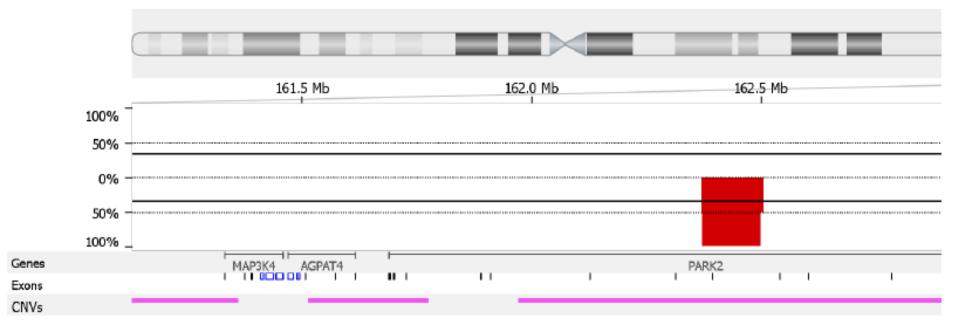
- similar to PennCNV
- several advantages of PennCNV:
 - state-specific and distance-dependent transition probabilities
 - better adapted to Illumina BAF calculation procedure
 - population frequency of the B allele considered
 - family information can be included (CNV-NDPs)

Other Programs: Birdsuite

The Birdsuite is a fully open-source set of tools to detect and report <u>SNP</u> genotypes, common Copy-Number Polymorphisms (CNPs), and novel, rare, or de novo CNVs in samples processed with the Affymetrix platform. While most of the components of the suite can be run individually (for instance, to only do SNP genotyping), the Birdsuite is especially intended for integrated analysis of SNPs and CNVs. Support for chips and platforms other than the Affymetrix SNP 6.0 is currently limited, but we are currently working on creating the supporting files for other common genotyping platforms.

Other Programs: SNPRank (Nexus)

Dear Uwe,


The algorithm is new and we have developed it ourselves. It is called SNPRank. Are you working with Hanna Göransson at Uppsala?

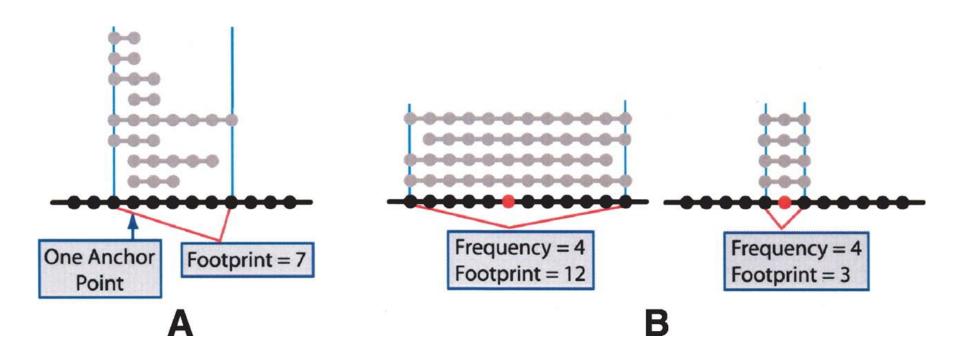
-Soheil

Comparison of samples

• Frequency plots (Nexus):

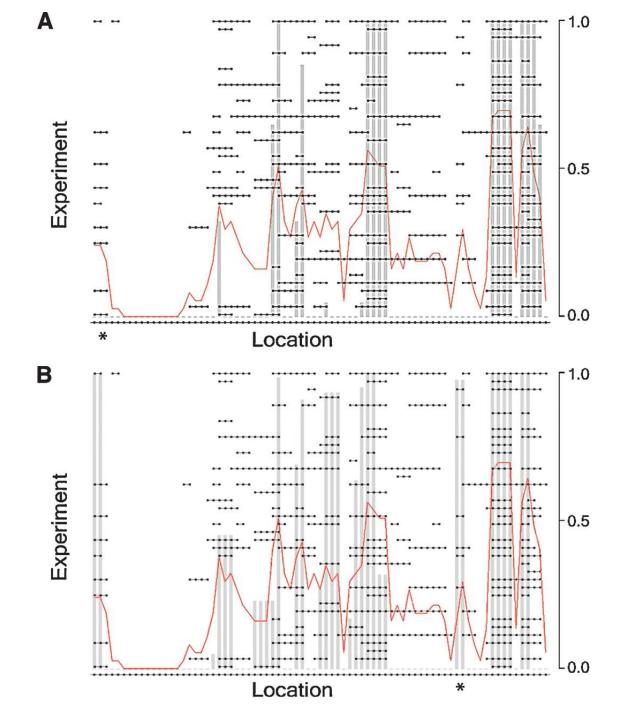
Comparison of samples

STAC: A method for testing the significance of DNA copy number aberrations across multiple array-CGH experiments


Sharon J. Diskin, Thomas Eck, Joel Greshock, et al.

Genome Res. 2006 16: 1149-1158 Access the most recent version at doi:10.1101/gr.5076506

STAC - permutation


An estimate of the null distribution is obtained via permutations where a permutation consists of a random rearrangement of the intervals of each profile (without replacement). In this way we preserve much of the nature of the data within samples while perturbing any concordance across samples. For example, if a profile with M locations had only one interval of length l, then there would be M - l + 1 permutations of this profile, each equally likely.

STAC-results

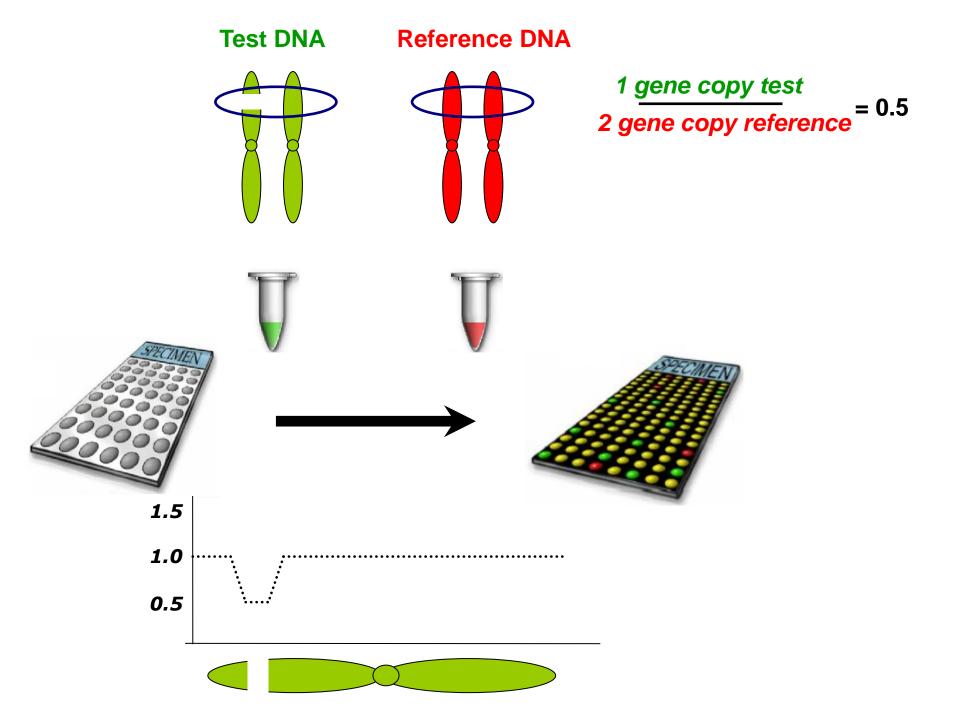
Thanks !

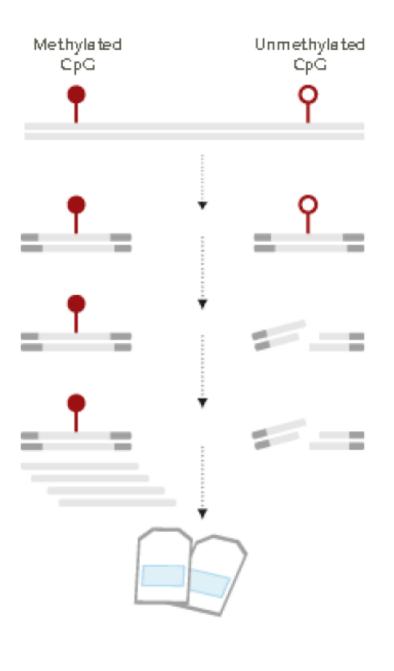
STACresults

Http://www.hapmap.org/whatishapmap.html.en Haplotypes and tag SNPs

Many generations

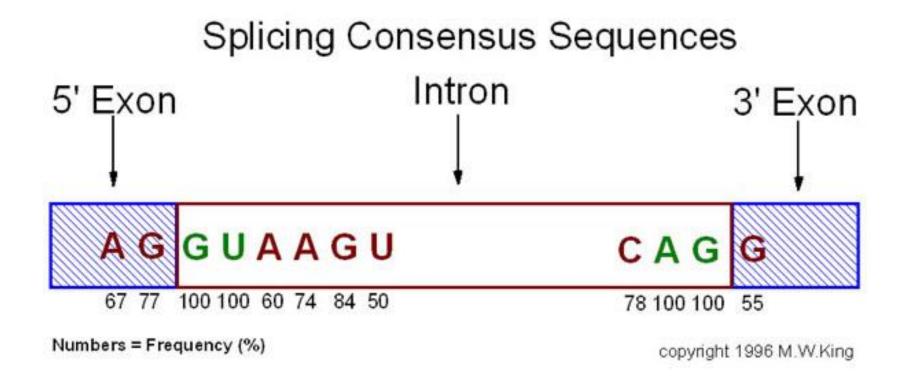
Over the course of many generations, segments of the ancestral chromosomes in an interbreeding population are shuffled through repeated recombination events. Some of the segments of the ancestral chromosomes occur as regions of DNA sequences that are shared by multiple individuals (Figure 1). These segments are regions of chromosomes that have not been broken up by recombination, and they are separated by places where recombination has occurred. These segments are the haplotypes that enable geneticists to search for genes involved in diseases and other medically important traits.


A given haplotype can occur at different frequencies in different populations.


Haplotypes and tag SNPs

- In many parts of our chromosomes, just a handful of haplotypes are found in humans.
- In a given population, 55 % of people may have one version of a haplotype, 30 % may have another, 8 % may have a third, and the rest may have a variety of less common haplotypes.
- The HapMap Project is identifying these common haplotypes in four populations from different parts of the world.
- It also is identifying **"tag" SNPs** that uniquely identify these haplotypes:
 - − testing an individual's tag SNPs (" genotyping") \rightarrow identification of the collection of haplotypes in that person's DNA
 - The number of tag SNPs that contain most of the information about the patterns of genetic variation is estimated to be about 300,000 to 600,000, which is far fewer than the 10 million common SNPs

Full-coverage human chromosome 1 array, with ~2 200 data points (from Sanger Centre, UK) – application to analysis of meningioma



		***********	*************
			000000000000000000000000000000000000000

			••••••••
	• • • • • • • • • • • • • • • • • • • •		

Description

- Genomic DNA is isolated from freshfrozen human samples.
- DNA is cut with methylation-insensitive restriction enzymes followed by ligation of linkers.
- Resulting fragments are cut with methylation- sensitive restriction enzymes.
- Un-cut (i.e. methylated) fragments are PCR amplified using linker-specific primers.
- Amplified fragments are labeled and hybridized to Epigenomics' proprietary microarray covering 50,000 CpG-rich human genomic regions (designed by Epigenomics).

