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3. Generalized Linear Models
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o Generalization of (general) linear models 
o Response variable is connected to the linear part via a link function
o Different error distributions of the response variable possible: 

o normal, binomial, Poisson, ....

Assumptions:

o independence of errros

o absence of multicollinearity

o lack of strongly influential outliers

(no error term!)



Logistic Regression
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Fitting a regression curve 𝑦 = 𝑓(𝑥) when the response 𝑦 is binomial

Example: Th. Tarpey [ http://www.wright.edu/~thaddeus.tarpey/ ] 

Predictor: Dosage of carbon disulphide (CS2, insecticide) - continuous
Response: binomial (dichotomous): killed / alive  or  1/0
Response in 0, 1 → ordinary linear regression is not possible:



Logistic Regression
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Data can be given for each sample:

# Sample   Dose    Killed  # Killed (=1) or not (=2) for each beetle 

# 1 49.1 0

# 2 49.1 0

# 3 49.1 1

# 4 49.1 0

# ... ... ...

# ... ... ...

# 478 76.5 1

# 479 76.5 1

# 480 76.5 1

# 481 76.5 1

... or (somewhat pre-processed) as proportions:

# Dose    Exposed  Killed  # Number Exposed & Killed for each Dose

# 1 49.1 59 6

# 2 53.0 60 13

# 3 56.9 62 18

# 4 60.8 56 28

# 5 64.8 63 52

# 6 68.7 59 53

# 7 72.6 62 61

# 8 76.5 60 60



Logistic Regression
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Plot proportion vs. dosage:

Proportion = beetles$Killed / beetles$Exposed

beetles = cbind(beetles, Proportion)

beetles

#   Dose Exposed  Killed     Proportion

# 1 49.1 59 6 0.1016949

# 2 53.0 60 13 0.2166667

# 3 56.9 62 18 0.2903226

# 4 60.8 56 28 0.5000000

# 5 64.8 63 52 0.8253968

# 6 68.7 59 53 0.8983051

# 7 72.6 62 61 0.9838710

# 8 76.5 60 60 1.0000000 

plot(Proportion ~ Dose, data = beetles, main = …
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plot(Proportion ~ Dose, data = beetles, main = "Proportion killed vs. dosage")

S-shaped between 0 and 1

o logistic function 
o 𝑡 can be any real number
o ... but 𝑦 is confined to the 

interval 0, 1

is equivalent to:



Logistic Regression
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The response (proportions) is between 0 and 1, and the curve looks S-shaped. 
Hence, to model the relationship between dosage (𝑥) and proportion killed (𝑝), 
a logistic function could work, for instance:

By using two parameters (𝛽0, 𝛽1) as argument of the exponential function,
we are able to independently adjust the center 𝑥0.5 of the curve (where
𝑦 = 0.5) and the slope 𝑝′ 𝑥 at this center, since we have:

The next pages show how 𝑝(𝑥) changes with 𝛽0 and 𝛽1.



Logistic Function

Uwe Menzel, 2014

Changing 𝛽1 but keeping 
the ratio Τ𝛽0 𝛽1 constant 
does not change the point 
on the 𝑥-axis where 
𝑝 𝑥 = Τ1 2, but it changes 
the slope in this point.



Logistic Function
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Keeping 𝛽1 constant and 
changing 𝛽0 shifts the 
point where 𝑝 𝑥 = Τ1 2
but does not changes the 
slope in this point.
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The right-hand term can be extended when the model includes multiple 
predictors:

… where the left side is called logit.

is equivalent to:The formula



Logistic Regression
- Terms -
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o If 𝑝 is interpreted as a probability, then Τ𝑝 1 − 𝑝 is called odds:

o Τ𝑜𝑑𝑑𝑠 = 𝑝 𝑠𝑢𝑐𝑐𝑒𝑠 𝑝 𝑓𝑎𝑖𝑙𝑢𝑟𝑒

o The natural logarithm of the odds is called “log odds” or “logit”. 

o The logit is the link function for logistic regression.

o The odds can take arbitrary positiv real values, 

o e.g. 𝑝 = 0.8 → odds = 4

o The log-odds can take arbitrary real values, 

o e.g. 𝑝 = 0.2 →   odds = Τ1 4 →  𝑙𝑛 1/4 = −1.386
o e.g. 𝑝 = 0.5 →   odds = 1 →   𝑙𝑛 1 = 0



Probability vs. Odds
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Throw a die:

Random variable 𝑋: number on the die



Logistic Regression: Parameter 
Estimation*
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How to find 𝜷𝟎 and 𝜷𝟏 ?

o determine 𝛽0 and 𝛽1 in such a way that the fitted 𝑝(𝑥) matches as good as 
possible the observed points 𝑥𝑖 , 𝑝 𝑥𝑖

o least-squares regression is not possible: 
o neither the normality nor the equal variance assumption are met for  

0/1-values !
o Maximum-Likelihood (ML) estimation is more promising: choose those 

parameters (𝛽0, 𝛽1) that make the observation most likely



Logistic Regression: Parameter Estimation*
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The response variable in the above experiment is binomial for a given dosage 
(two outcomes: killed / alive) →
o Taking 𝑛 independent samples, each with success probability 𝑝, gives the 

following probability that 𝑘 of them succeed: 
o (random variable 𝑋 = number of successes, success = beetle killed [Sorry!]):

ML seeks the parameter 𝑝 that makes the observed outcome most likely.
Hence, if we had this row only, we would try to find the 𝑝 that maximizes
𝐿(𝑝) in the following expression:

maximize by adjusting 𝑝

probability mass function for the 
binomial distribution 

# Dose   Exposed   Killed     

# 1  49.1        59        6

# 2  ...

For the dosage 49.1, we had 6 successes in 59 trials. 
This is the experimental outcome. in ML, we search 
the 𝑝 which makes that outcome most likely.

The first observation of the beetle experiment was:



Logistic Regression: Parameter 
Estimation*
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However, because we have multiple observations (at different dosages 𝑥), we
have to maximize the joint likelihood covering all observed outcomes:

Note that there is no single probability 𝑝 for all 𝑋𝑖 because 𝑝 depends on the
dosage. We presumed that the measurements are independent, so that the joint
likelihood simplifies to:

or in more detail:

We want to find 𝑝 as a function of the dosage, i.e. we propose there exists a
function 𝑝(𝑥), so that we can write 𝑝1 = 𝑝 𝑥1 , 𝑝2 = 𝑝 𝑥2 , etc. , which allows the
following replacement:
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As shown above, it might be convenient to think of  𝑝 𝑥 as a logistic function:

consider 𝑝 as a function of 𝑥

𝐿 is a function of the 𝑝 𝑥1 , 𝑝 𝑥2 , etc. which in
turn are functions of 𝛽0 and 𝛽1, so that 𝐿 is a
function of 𝛽0 and 𝛽1. In ML, we have to choose
𝛽0 and 𝛽1 in such a way that 𝐿 𝛽0, 𝛽1 becomes
maximal.



Logistic Regression with “glm”
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Unfortunately, there is no closed solution for the ML expression, so that 
numerical solutions are needed (Newton-Raphson iteration or similar).
The good news is that we don’t have to care about all that, because we use R:

a) Using the “glm” function when the results are stored as proportions:

# Dose Exposed Killed  Proportion

# 1 49.1 59 6 0.1016949

# 2 53.0  60 13 0.2166667

# 3 56.9  62 18 0.2903226

# 4 60.8 56 28 0.5000000

# 5 64.8 63 52 0.8253968

# 6 68.7 59 53 0.8983051

# 7 72.6 62 61 0.9838710

# 8 76.5 60 60 1.0000000

survived = beetles$Exposed - beetles$Killed

killed = beetles$Killed

exposure = beetles$Dose

logfit = glm(cbind(killed, survived) ~ Dose, family = binomial) # logit link!

summary(logfit)



Logistic Regression with “glm”

www.matstat.org

b) Using the “glm” function when the results are stored for each sample 
(using 0/1 coding):

# Sample Dose Killed

# 1 49.1 0

# 2 49.1 0

# 3 49.1 1

# 4 49.1 0

# ... ... ...

# ... ... ...

# 478 76.5 1

# 479 76.5 1

# 480 76.5 1

# 481 76.5 1

logfit = glm(killed ~ Dose, data=beetles.fr, family = binomial) # logit

summary(logfit)

Both methods a) and b) result in the same output:



Logistic Regression with “glm”
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o Fisher Scoring iteration is similar to Newton-Raphson algorithm
o Wald Test can be used because the ML-Estimator is normally distributed if the 

sample size is big enough

summary(logfit)

# .... clipped ....

# 

# Coefficients:

# Estimate Std. Error z value Pr(>|z|) 

# (Intercept) -14.82300    1.28959  -11.49   <2e-16 ***

# Dose 0.24942    0.02139   11.66   <2e-16 ***

# 

# (Dispersion parameter for binomial family taken to be 1) 

# 

# Null deviance: 284.2024 on 7 degrees of freedom

# Residual deviance: 7.3849 on 6 degrees of freedom

# AIC: 37.583

# 

# Number of Fisher Scoring iterations: 4

Wald-Test

𝛽0 𝛽1
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beta.zero = coef(logfit)[1] # -14.823 

beta.one  = coef(logfit)[2] # 0.2494156

That means the fitted function 𝑝(𝑥) is:

plot(Proportion ~ Dose, data=beetles) # observed

range(beetles$Dose) # 49.1 76.5

x.fit = seq(49.1, 76.5, len = 201)

# the formula above: 

y.fit = exp(beta.zero + beta.one*xt)/(1 + exp(beta.zero + beta.one*xt))

points(x.fit, y.fit, col="red", type="l", lwd=1.5) # fitted



Logistic Regression with “glm”
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exp. values (proportions) and
fitted curve 

plotting the (0,1) values for each 
sample does not look pretty



Logistic Regression* 
- Interpretation of the Regression coefficients -
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If the predictor 𝑥 is incremented by 1 unit, i.e. 𝑥 → 𝑥 + 1

Every unit increase in 𝑥 increases the odds by 𝑒𝑥𝑝 𝛽1 .

odds-ratio: for continuous predictors

odds-ratio: for categorical predictors



Logistic Regression* 
- Model search-
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o Often, multiple potential predictors are available
o model search: similar to multiple linear regression 
o R: drop1, add1, step, update, anova 

o model search: http://data.princeton.edu/r/glms.html 
o Validation of models (null and residual deviance) with chi-square test, 

e.g.:
o Residual deviance: 7.3849 on 6 degrees of freedom

o pchisq(7.3849, df=6, lower.tail = F) # 0.286713

o model fits the data well (model is rejected if p < 0.05) 



Multinomial Regression
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o Predictors: continuous / categorical

o Response: categorical

o with more than 2 possible outcomes

o phenotype A / phenotype B / phenotype C 

o splice variant A / splice variant B / splice variant C 

o ...

6 possible outcomes



Multinomial Regression
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𝐾 outcomes → 𝐾 − 1 independent binary logistic regressions:
(see http://en.wikipedia.org/wiki/Multinomial_logistic_regression)

once 𝑃 𝑌𝑖 = 𝐾 is 
known, the other 
𝑃 … can be 
calculated recursively

We have σ𝑎𝑙𝑙 𝑘 𝑃 𝑌𝑖 = 𝑘 = 1, 
and therefore:
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library(nnet) # multinom (neural networks)

str(data) # Steffi, Marcel (FLI)

# 'data.frame': 181 obs. of 7 variables: 

# $ Iso1 : num 6.76 6.4 5.3 4.52 4.37 ... 

# $ Iso2 : num 8.55 8.4 4.98 5 8.01 ... 

# $ Iso3 : num 75.2 74.6 80.1 82.1 78.5 ... 

# $ Iso4 : num 9.51 10.55 9.6 8.39 9.14 ... 

# $ Age : int 58 72 65 68 78 62 62 63 45 49 ... 

# $ Gender: Factor w/ 2 levels "female","male": 2 1 1 2 1 2 1 2 1 1 ... 

# $ group : Factor w/ 3 levels "Control","Sepsis",..: 1 1 1 1 1 1  ... 

levels (group) # "Control", "Sepsis", "SIRS" : 3 possible outcomes

m1 = multinom(group ~ Iso1 + Iso2 + Iso3 + Iso4 + Age + Gender, data = data) 

summary(m1) 

regression.coef = coef(m1) # regression coefficients 

regression.CI = confint(m1, level = 0.95) # confidence interval

Additive model:
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A (much) smaller model:

m.age = multinom(group ~ Age, data = data) # just age as predictor? 

summary(m.age)

anova(m1, m.age, test="Chisq") # compare models using anova 

# Model Resid.df Resid.Dev   Test  Df   LR stat.      Pr(Chi)

# 1 Age   358  251.4668  NA  NA       NA

# 2 Iso1 ... + Gender   350  165.4214 1 vs 2    8  86.0454  2.997602e-15

o The bigger model is significantly better: 𝑝 = 3𝑒−15 →  age alone does not 
explain the vulnerability to SIRS or sepsis.

o Models can also be compared using the Akaike Information Criterion (AIC):

extractAIC(m1) # 189.4214 

extractAIC(m.age) # 392.4355 

AIC tells "how much information is lost" if the real data is replaced by the model.

𝑘 = # parameters, 𝐿: maximized likelihood



Multinomial Regression
- Extractor functions -
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methods(class="multinom") 

add1.multinom* anova.multinom* coef.multinom* 

confint.multinom*   drop1.multinom* extractAIC.multinom* 

logLik.multinom*    model.frame.multinom*   predict.multinom* 

print.multinom*     summary.multinom*       vcov.multinom* 

o functions for model search and comparison
o confidence intervals
o prediction of outcome
o graphs



GLM and edgeR
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see  DEG.edgeR.GLM.R

o The package ... implements statistical methods based on generalized linear 
models, suitable for multifactor experiments

o “classic edgeR” and “glm edgeR” (“glmFit”)

o "classic" edgeR ignores (averages over) all factors except for the one just 
examined


