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2. General Linear Model
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We have 𝑘 independent variables (and still one dependent variable). Because
we have 𝑁 measurements for each independent variable, and 𝑁
measurements for the dependent variable, the 𝑥𝑘 and 𝑦 should now be
written as vectors. For the 𝑖-th measurement, we can write:

Regarding the 𝑥- variables, the first index stands for the measurement,
the second index indicates the variable. This can also be written (here
for 3 measurements and 3 independent variables):

A general linear model includes multiple independent variables.



Simulation of Multidimensional data
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n = 10 # sample size

x1 = runif(n, 0, 100) 

x2 = runif(n, 10, 200) 

x3 = runif(n, 100, 400)

cor.test(x1,x2) # p-value = 0.2619  OK, not sign. correlated

cor.test(x1,x3) # p-value = 0.3302  OK, not sign. correlated

cor.test(x2,x3) # p-value = -0.1205 OK, not sign. correlated

The 𝑥𝑖 must not be (strongly) correlated! (use also pairs function in R)

If the predictors were correlated, the model wouldn't know how to “distribute” 
the regression coefficients between them (→ “NA” for estimated coefficients)

y = 3 + 2*x1 + 3*x2 + 1*x3 + rnorm(n, 0, 2) # simulated response

Let's see if we can “rediscover” the true coefficients chosen above by regression!



Multidimensional Regression with "lm"
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mdata = data.frame(y = y, x1 = x1, x2 = x2, x3 = x3)

mdata = mdata[order(mdata$y),] # sort according to y

head(mdata)

# y x1 x2 x3

# 4  437.4030 10.60656  10.94048  378.8306

# 10 588.1563 31.24962  36.42743  412.4942

# 6  629.5175 73.75266  89.65545  208.8536

# 8  653.3158 85.38278  97.99875  185.5635

# 5  739.1781 56.60325 118.66963  269.5035

# 3  739.7772 49.55353 179.67645  100.9213

plot(mdata$y)

see 
General_Reg_Models_
Examples.R



Multidimensional Regression 
with "lm"
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lm.res = lm(y ~ x1 + x2 + x3, data = mdata) # Additive model

# Call:

# lm(formula = y ~ x1 + x2 + x3, data = mdata)

# Coefficients:

# (Intercept)    x1    x2    x3 

#       3.153 2.027 2.974 1.003

o “Additive model”
o Wilkinson-Rogers Notation, translates to the above model
o The coefficients were successfully rediscovered.



More output using “summary”
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summary(lm.res)

# Call:

# lm(formula = y ~ x1 + x2 + x3, data = mdata)

# Residuals:

#      Min       1Q   Median      3Q    Max 

# -1.76126 -0.94692 -0.04002 0.65184 2.76677 

# Coefficients:

# Estimate Std. Error  t value   Pr(>|t|) 

# (Intercept) 3.152911 2.658689    1.186       0.28 

# x1 2.026939 0.025607   79.155   2.74e-10 ***

# x2 2.973589 0.010156  292.797   1.07e-13 ***

# x3 1.002512 0.005698  175.954   2.27e-12 ***

# Residual standard error: 1.632 on 6 degrees of freedom

# Multiple R-squared: 1, Adjusted R-squared: 0.9999 

# F-statistic: 4.486e+04 on 3 and 6 DF, p-value: 1.938e-12

o Output analogous to simple linear regression (t-tests), but  𝐹 ≠ 𝑡2

o 𝐻0 for F-test:  𝛽1 = 𝛽2 = … = 𝛽𝑝 = 0

o “is there some dependence between the 𝑥𝑖 and 𝑦 ?
o 𝑅2 = 1 very good model for the data obtained  (weak noise)
o Extractor functions: coef(lm.res), resid(lm.res), anova(lm.res),... 



Multiple Linear Regression with Interaction
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Simulate new response variable:

y = 3 + 2*x1 + 3*x2 + 1*x3 + 4*x1*x3 + rnorm(n, 0, 2) # interaction! 

mdata = data.frame(y = y, x1 = x1, x2 = x2, x3 = x3)

mdata = mdata[order(mdata$y),]

plot(mdata$y) 

Despite of the non-linearity in 𝑥, 
the model is still linear w.r.t. the 𝛽𝑖

→ multiple linear regression can 
be applied !



Multiple Linear Regression with 
Interaction
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Simulated data:

y = 3 + 2*x1 + 3*x2 + 1*x3 + 4*x1*x3 + rnorm(n, 0, 2) # interaction! 

... corresponds to the model:

... translates to Wilkinson-Rogers-Notation:

y ~ x1 + x2 + x3 + x1:x3   # interaction term using colon ":" 

Why do we say that the variables 𝑥1 and 𝑥3 ”interact”?: 

If a non-interacting variable 𝑥𝑚 increases by an amount of ∆, the response 𝑦
increases by 𝛽𝑚 ∙ ∆, independent of any other variable. For example, if 𝑥2

increases by ∆, the response increases by ∆ ∙ 𝛽2. However, if 𝑥3 increases by
∆, the response increases by 𝛽3 + 𝛽4 ∙ 𝑥1 ∙ ∆, i.e. the increase depends on
the variable 𝑥1.



Multiple Linear Regression with Interaction
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a) Let's try the additive model first (without interaction):

lm1 = lm(y ~ x1 + x2 + x3, data = mdata)

# Coefficients:

# (Intercept)       x1      x2      x3 

#   -54540.06  1049.80  -55.75  213.66 # doesn't work!

b) Model with interaction:

lm2 = lm(y ~ x1 + x2 + x3 + x1:x3, data = mdata)  

# Coefficients:

# (Intercept)      x1      x2      x3   x1:x3 

#      5.1748  1.9506  3.0172  0.9822  4.0003 # much better, 

# not perfect

o In practice, the correct interaction terms might not be known
o → dig up an appropiate model by trial and error
o “add1” or “drop1”: add / remove terms step by step.
o Compare models using: anova(lm1, lm2, test = “Chisq")



Comparing Regression Models with ANOVA*
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o In general, ANOVA compares variances 
o →  compare the residual variances of two regression models: 

o Model “Big”:      𝑝1 coefficients 𝛽𝑖

o Model “Small”:  𝑝2 coefficients 𝛽𝑖 ,   𝑝2 < 𝑝1 (nested!)
o The bigger model will always be able to fit the data at least as well as the 

small model.
o But does “Big” give a significantly better fit to the data ?

o → F test (used by ANOVA)
o 𝐻0: “Big” does not give a significantly better fit than “Small”

If the null hypothesis is true, then:

A big value of the F-statistic would mean that there is a big difference between the 
sums of squares of both models. In that case, the null hypothesis is rejected. 

recall that:



Comparing Regression Models with ANOVA*
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under 𝐻0

o here:
o 𝐹 = 1.88 (observed)
o 𝑝 = 0.15
o 𝐻0 not rejected
o both models perform 

equally
o → choose the smaller 

modelarea = 0.15
𝐹 = 1.88



Comparing Regression Models with 
ANOVA*
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anova(lm1, lm2, test = "Chisq") # comparison of nested lm1 and lm2

# Analysis of Variance Table

# 

# Model 1: y ~ x1 + x2 + x3

# Model 2: y ~ x1 + x2 + x3 + x1:x3

#   Res.Df        RSS Df   Sum of Sq          F     Pr(>F) 

# 1      6  806403914 

# 2      5         14    1    806403899  281359883  < 2.2e-16 ***

o Model 2 (with interaction) is significantly better ( 𝑝 < 2.2𝑒 − 16)
o the better model has much lower lower Residual Sum of Squares (RSS)
o For the comparison to work, the models must be nested !

o (the bigger model must include all terms of the smaller one)
o Find smallest model yielding "good" fit: Use additional predictors only 

if RSS is significantly reduced.

Another example:



Automated Model Search
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Aim: Find the smallest model which is "good enough“ which means that 
there is no bigger model which is significantly better

reduced = step(lm2, direction = "backward")            # shorten model stepwise 

In this case, no smaller model was found (all coefficients still in "summary"):

summary(reduced)

# Coefficients:
# Estimate     Std. Error         t value      Pr(>|t|) 
# (Intercept)      9.9565797   6.3879861           1.559          0.18 
# x1 1.9762362   0.0703385         28.096   1.07e-06   ***
# x2 3.0086989   0.0137903       218.175    3.84e-11  ***
# x3 0.9763001   0.0188445         51.808    5.07e-08  ***
# x1:x3 3.9998565   0.0002609    15328.127    < 2e-16   ***

All p-values (except for the one corresponding to the intercept, which is
of minor importance) are small, i.e. all corresponding coefficients
𝛽1, 𝛽2, 𝛽3, 𝛽4 are significantly different from zero. Hence, the response

is actually depending on these variables, and the interaction term is
necessary.



crabs = read.csv(file="crabs.csv", header=T)
head(crabs)

#    Species Gender x1    x2      x3      x4       y     # categ. & continuous predictors
# 1           B M   8.1   6.7   16.1   19.0    7.0     # y is the response
# 2 B           M   8.8   7.7   18.1   20.8    7.4
# 3 B           M   9.2   7.8   19.0   22.4    7.7
# 4 B           M   9.6   7.9   20.1   23.1    8.2
# 5 B           M   9.8   8.0   20.3   23.0    8.2
# 6 B           M 10.8   9.0   23.0   26.5    9.8

levels(crabs$Species)     # "B" "O" 
levels(crabs$Gender)     #  "F" "M" 

Multiple Regression Models with Categorical 
predictors
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o Categorical variables: male/female ; smoking: yes/no ; risk: high/middle/low 
o ANOVA: all explanatory variables are categorical
o Multiple Regression: explanatory variables can be continuous and/or 

categorical

Example from: http://www.utdallas.edu/~ammann/stat6338/node7.html
see General_Reg_Models_Examples.R 

http://www.utdallas.edu/~ammann/stat6338/node7.html


Multiple Regression Models with Categorical 
predictors
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Consider 𝑦 versus 𝑥4 for the different species (we ignore dependence on other 
variables for now):

plot(y ~ x4, data=crabs[which(crabs$Species == "B"),], col="blue"...)

points(y ~ x4, data=crabs[which(crabs$Species == "O"),], col="yellow3", …)

Trends for the species fairly parallel
… i.e species “O” adds some amount to 
the response independently of 𝑥4.
→ probably no interaction between 
“Species” and 𝑥4 → additive model



Multiple Regression Models with Categorical 
predictors
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lm.a = lm(y ~ x4 + Species, data=crabs) # Additive, categorical & continuous 

coef(lm.a)

#     (Intercept)         x4   SpeciesO 

#      -1.3001043  0.3998935  1.5373614

beta0 = coef(lm.a)[1] # -1.3001043

beta1 = coef(lm.a)[2] # 0.3998935

beta2 = coef(lm.a)[3] # 1.537361

The W-R notation used above translates to the model:

“Species” is a categorical variable  →  associated with indicator variable 𝐼𝑠𝑝𝑒𝑐𝑖𝑒𝑠 :

"𝐵" = "base level" or "reference level", associated with the indicator value 0



Multiple Regression Models with Categorical predictors
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Calculation of slope / intercept for species “B” and “O” (when plotting 𝑦 vs. 𝑥4):

abline(a = beta0 + beta2,  b = beta1, col = "yellow3", lty = 1, lwd = 2)

abline(a = beta0, b = beta1, col = "blue", lty = 1, lwd = 2) # same slope a 

see General_Reg_Models_Examples.R

We decided to go for a model without interaction between 𝑥4 and 𝑠𝑝𝑒𝑐𝑖𝑒𝑠. As a
result, both regression lines have the same slope, so that they are parallel.
Going from species ”B” to species “O” adds the amount 𝛽2 to the response
independently of 𝑥4. Let us add the regression lines for both species to the
data:



Multiple Regression Models with Categorical 
predictors
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abline(a = beta0 + beta2,  b = beta1, col = "yellow3", lty = 1, lwd = 2)

abline(a = beta0, b = beta1, col = "blue", lty = 1, lwd = 2) # same slope a 

Changing from species “B” to 
species “O” (in terms of changing 

the object of attention) adds 
𝛽2 = 1.54 to the regression 
line.



Multiple Regression Models with Categorical 
predictors and Interaction
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Now, consider the dependence of y from 𝑥2 for the different genders:

plot(y ~ x2, data=crabs[which(crabs$Gender == "F"),], col="pink", ..

points(y ~ x2, data=crabs[which(crabs$Gender == "M"),], col="green",.. 

Trends for “Female” and “Male” seem to 
have different slopes 
For higer 𝑥2, the Gender effect is more 
pronounced
→ a regression Model including an 
interaction terms is advisable



Multiple Regression Models with Categorical 
predictors and Interaction
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a) Try without interaction first:

lm.0 = lm(y ~ x2 + Gender, data=crabs) # additive model 

summary(lm.0) # (shortened)

# Estimate  Std. Error   t value    Pr(>|t|) 

# (Intercept)  -4.23317     0.38106    -11.11      <2e-16 ***

# x2 1.33144     0.02736     48.66      <2e-16 ***

# GenderM       2.60617     0.14047     18.55      <2e-16 *** # baselevel

According to Wilkinson-Rogers notation, y ~ x2 + Gender translates to



Multiple Regression Models with Categorical 
predictors and Interaction
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lm.0 = lm(y ~ x2 + Gender, data = crabs) # additive model

summary(lm.0)

beta0 = coef(lm.0)[1] # -4.233172

beta1 = coef(lm.0)[2] # 1.331443

beta2 = coef(lm.0)[3] # 2.60617

slope.female =  beta1

icept.female =  beta0

slope.male = beta1 # same slope as female

icept.male = beta0 + beta2

abline(a=icept.female, b=slope.female, col="pink",  lty=1, lwd=2) 

abline(a=icept.male,   b=slope.male,   col="green", lty=1, lwd=2) 



Multiple Regression Models with Categorical 
predictors and Interaction
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abline(a=icept.female, b=slope.female, col="pink",  lty=1, lwd=2) 

abline(a=icept.male,   b=slope.male,   col="green", lty=1, lwd=2) 

It seems that a model yielding the 
same slope for both datasets 
(Female, Male) does not work
→ interaction term needed



Multiple Regression Models with Categorical 
predictors and Interaction
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b) Model with interaction:

lm.b = lm(y ~ x2*Gender, data=crabs) # with interaction 

summary(lm.b)   # (shortened)

# Estimate  Std. Error  t value  Pr(>|t|) 

# (Intercept)  -2.29012     0.42271   -5.418  1.76e-07 ***

# x2 1.18737     0.03072   38.651   < 2e-16 ***

# GenderM -2.11660     0.63564   -3.330   0.00104 ** 

# x2:GenderM    0.37590     0.04962    7.575  1.38e-12 ***

According to Wilkinson-Rogers notation, y ~ x2*Gender translates to



Multiple Regression Models with Categorical 
predictors and Interaction
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This is a model yielding different slopes and intercepts for both genders.

lm.b = lm(y ~ x2*Gender, data=crabs) # with interaction

beta0 = coef(lm.b)[1]

beta1 = coef(lm.b)[2]

beta2 = coef(lm.b)[3]

beta3 = coef(lm.b)[4]

slope.female = beta1

icept.female = beta0

slope.male = beta1 + beta3

icept.male = beta0 + beta2

plot(y ~ x2, data=crabs[which(crabs$Gender == "F"),], col="pink", …

points(y ~ x2, data=crabs[which(crabs$Gender == "M"),], col="green", …)

abline(a=icept.female, b=slope.female, col="pink",  lty=1, lwd=2)

abline(a=icept.male,   b=slope.male,   col="green", lty=1, lwd=2) 



Multiple Regression Models with Categorical 
predictors and Interaction
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o A model including interaction 
provides a better fit. 

o The regression lines for different 
genders have different slopes.



Multiple Regression Models with Multilevel
Categorical Predictors
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o The factor “Gender” considered above had two levels: female / male → we 
needed one indicator variable 𝐼𝑔𝑒𝑛𝑑𝑒𝑟 to build a regression model

o In general: Factors with 𝐿 levels require 𝐿 − 1 indicator variables. 

o Let us look at a categorical variable with 3 levels:

effect = read.csv(file = "Effects.csv", header = T)

levels(effect$effect)  # "moderate"  "strong"   "weak" 

plot(y ~ x4, data=effect[which(effect$effect == "weak"),],….

points(y ~ x4, data=effect[which(effect$effect == "moderate"),], ….

points(y ~ x4, data=effect[which(effect$effect == "strong"),], ….



Multiple Regression Models with Multilevel
Categorical Predictors
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The trends for the different 
levels are fairly parallel → no 
interaction between the 
categorical variable ”effect” 
and the continuous variable 
𝑥4 → use additive model



Multiple Regression Models with Multilevel
Categorical Predictors
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No interaction, use additive model:

fit <- lm(y ~ x4 + effect, data = effect) # additive

summary(fit)  # shortened

# Coefficients:

#               Estimate Std. Error t value Pr(>|t|)    

# (Intercept)   1.624953   0.232370   6.993 4.14e-11 ***

# x4            0.400579   0.006268  63.908  < 2e-16 ***

# effectstrong  3.462941   0.118086  29.326  < 2e-16 ***

# effectweak   -6.001887   0.110700 -54.217  < 2e-16 ***

According to Wilkinson-Rogers notation, y ~ x4 + effect translates to

The level moderate is chosen as base level because it comes first in the 
alphabet (the command levels()lists the base level first)



Multiple Regression Models with Multilevel
Categorical Predictors
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Levels are ordered according to the alphabet. The level ”moderate” is the base
level, both indicators are assigned a zero value. The level ”strong” is connected
with value 1 for 𝐼1, ”weak” is connected with value 1 for 𝐼2.



Multiple Regression Models with Multilevel
Categorical Predictors
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coef(fit)

# (Intercept)           x4 effectstrong   effectweak 

#   1.6249534    0.4005791    3.4629406   -6.0018875

beta0 = coef(fit)[1] # 1.624953   (Intercept) 

beta1 = coef(fit)[2] # 0.4005791   x4 

beta2 = coef(fit)[3] # 3.462941   effectstrong

beta3 = coef(fit)[4] # -6.001887  effectweak

slope.moderate = beta1

inter.moderate = beta0

slope.strong = beta1

inter.strong = beta0 + beta2

slope.weak = beta1

inter.weak = beta0 + beta3

abline(a = inter.moderate, b = slope.moderate, col = "yellow3", lty = 1, lwd = 2) 

abline(a = inter.strong, b = slope.strong, col = "red", lty = 1, lwd = 2)

abline(a = inter.weak, b = slope.weak, col = "blue", lty = 1, lwd = 2)



Multiple Regression Models with Multilevel
Categorical Predictors
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Multiple Regression Models
- Comparison of models -
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Show that lm.b (with interaction) is better than lm.0 (no interaction):

anova(lm.0, lm.b, test="Chisq") # F-statistic = ratio of two chi^2

# Analysis of Variance Table

# 

# Model 1: y ~ x2 + Gender

# Model 2: y ~ x2 * Gender

#   Res.Df    RSS  Df   Sum of Sq   Pr(>Chi) 

# 1    197 177.83 

# 2    196 137.55 1      40.272  3.586e-14 ***

The p-value indicates that there is a significant difference between the
performance of the two models. Model 2 (with interaction) is the better
model - the residual sum of squares (RSS) is lower.


