Regression Models in Systems Biology with R

Part II: General Linear Model

Uwe Menzel 2014

www.matstat.org

Outline

1. Simple Linear Regression

1. The statistics behind the output of "lm"

2. General Linear Model

1. Continuous and categorical variables mixed, "lm"

2. Interaction

- 3. Generalized Linear Model
 - 1. Logistic Regression "glm"
 - 2. Multinomial Regression "multinom"

2. General Linear Model

A general linear model includes multiple independent variables.

 $y = \beta_0 + \beta_1 \cdot x_1 + \beta_2 \cdot x_2 + \ldots + \beta_k \cdot x_k + \varepsilon \qquad \varepsilon \sim N(0, \sigma)$

We have k independent variables (and still one dependent variable). Because we have N measurements for each independent variable, and Nmeasurements for the dependent variable, the x_k and y should now be written as vectors. For the *i*-th measurement, we can write:

$$y_i = \beta_0 + \beta_1 \cdot x_{i1} + \beta_2 \cdot x_{i2} + \ldots + \beta_k \cdot x_{ik} + \varepsilon_i \quad \varepsilon_i \sim N(0, \sigma)$$

Regarding the *x*- variables, the first index stands for the measurement, the second index indicates the variable. This can also be written (here for 3 measurements and 3 independent variables):

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \beta_0 + \beta_1 \begin{pmatrix} x_{11} \\ x_{21} \\ x_{31} \end{pmatrix} + \beta_2 \begin{pmatrix} x_{12} \\ x_{22} \\ x_{32} \end{pmatrix} + \beta_3 \begin{pmatrix} x_{13} \\ x_{23} \\ x_{33} \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \end{pmatrix}$$

Simulation of Multidimensional data

```
n = 10 # sample size
x1 = runif(n, 0, 100)
x2 = runif(n, 10, 200)
x3 = runif(n, 100, 400)
cor.test(x1,x2) # p-value = 0.2619 OK, not sign. correlated
cor.test(x1,x3) # p-value = 0.3302 OK, not sign. correlated
cor.test(x2,x3) # p-value = -0.1205 OK, not sign. correlated
```

The x_i must not be (strongly) correlated! (use also pairs function in R) If the predictors were correlated, the model wouldn't know how to "distribute" the regression coefficients between them (\rightarrow "NA" for estimated coefficients)

y = 3 + 2*x1 + 3*x2 + 1*x3 + rnorm(n, 0, 2) # simulated response

Let's see if we can "rediscover" the true coefficients chosen above by regression!

Multidimensional Regression with "lm"

mdata = data.frame(y = y, x1 = x1, x2 = x2, x3 = x3)
mdata = mdata[order(mdata\$y),] # sort according to y
head(mdata)

#		У	x1	x2	x3
#	4	437.4030	10.60656	10.94048	378.8306
#	10	588.1563	31.24962	36.42743	412.4942
#	6	629.5175	73.75266	89.65545	208.8536
#	8	653.3158	85.38278	97.99875	185.5635
#	5	739.1781	56.60325	118.66963	269.5035
#	3	739.7772	49.55353	179.67645	100.9213
ר <u>מ</u>	lot	(mdataŚv)			

www.matstat.org

Multidimensional Regression with "lm"

```
y = \beta_0 + \beta_1 \cdot x_1 + \beta_2 \cdot x_2 + \ldots + \beta_k \cdot x_k + \varepsilon \qquad \varepsilon \sim N(0, \sigma)
```

```
lm.res = lm(y ~ x1 + x2 + x3, data = mdata) # Additive model
# Call:
# lm(formula = y ~ x1 + x2 + x3, data = mdata)
# Coefficients:
# (Intercept) x1 x2 x3
# 3.153 2.027 2.974 1.003
```

- "Additive model"
- Wilkinson-Rogers Notation, translates to the above model
- The coefficients were successfully rediscovered.

More output using "summary"

```
summary(lm.res)
# Call:
\# lm(formula = y ~ x1 + x2 + x3, data = mdata)
# Residuals:
#
     Min 10 Median 30 Max
# -1.76126 -0.94692 -0.04002 0.65184 2.76677
# Coefficients:
          Estimate Std. Error t value Pr(>|t|)
#
# (Intercept) 3.152911 2.658689 1.186 0.28
# x1 2.026939 0.025607 79.155 2.74e-10 ***
# x2 2.973589 0.010156 292.797 1.07e-13 ***
# x3 1.002512 0.005698 175.954 2.27e-12 ***
# Residual standard error: 1.632 on 6 degrees of freedom
# Multiple R-squared: 1, Adjusted R-squared: 0.9999
# F-statistic: 4.486e+04 on 3 and 6 DF, p-value: 1.938e-12
```

- Output analogous to simple linear regression (t-tests), but $F \neq t^2$
- H_0 for F-test: $\beta_1 = \beta_2 = \dots = \beta_p = 0$

• "is there some dependence between the x_i and y?

- $R^2 = 1$ very good model for the data obtained (weak noise)
- o Extractor functions: coef(lm.res), resid(lm.res), anova(lm.res),...

Multiple Linear Regression with Interaction

Simulate new response variable:

```
y = 3 + 2*x1 + 3*x2 + 1*x3 + 4*x1*x3 + rnorm(n, 0, 2) # interaction!
mdata = data.frame(y = y, x1 = x1, x2 = x2, x3 = x3)
mdata = mdata[order(mdata$y),]
plot(mdata$y)
```


Despite of the non-linearity in x, the model is still linear w.r.t. the β_i \rightarrow multiple **linear** regression can be applied !

Multiple Linear Regression with Interaction

Simulated data:

y = 3 + 2*x1 + 3*x2 + 1*x3 + 4*x1*x3 + rnorm(n, 0, 2) # interaction!

... corresponds to the model:

 $y = \beta_0 + \beta_1 \cdot x_1 + \beta_2 \cdot x_2 + \beta_3 \cdot x_3 + \beta_4 \cdot x_1 \cdot x_3 + \varepsilon$

... translates to Wilkinson-Rogers-Notation:

y ~ x1 + x2 + x3 + x1:x3 # interaction term using colon ":"

Why do we say that the variables x_1 and x_3 "interact"?:

If a non-interacting variable x_m increases by an amount of Δ , the response y increases by $\beta_m \cdot \Delta$, independent of any other variable. For example, if x_2 increases by Δ , the response increases by $\Delta \cdot \beta_2$. However, if x_3 increases by Δ , the response increases by $(\beta_3 + \beta_4 \cdot x_1) \cdot \Delta$, i.e. the increase depends on the variable x_1 .

Multiple Linear Regression with Interaction

a) Let's try the additive model first (without interaction):

```
lm1 = lm(y ~ x1 + x2 + x3, data = mdata)
# Coefficients:
# (Intercept) x1 x2 x3
# -54540.06 1049.80 -55.75 213.66 # doesn't work!
```

b) Model with interaction:

```
lm2 = lm(y ~ x1 + x2 + x3 + x1:x3, data = mdata)
# Coefficients:
# (Intercept) x1 x2 x3 x1:x3
# 5.1748 1.9506 3.0172 0.9822 4.0003 # much better,
# not perfect
```

- In practice, the correct interaction terms might not be known
- $\circ \rightarrow$ dig up an appropriate model by trial and error
- o "add1" or "drop1": add / remove terms step by step.
- o Compare models using: anova (lm1, lm2, test = "Chisq")

Comparing Regression Models with ANOVA*

- In general, ANOVA compares variances
- $\circ \rightarrow$ compare the residual variances of two regression models:
 - Model "Big": p_1 coefficients β_i
 - Model "Small": p_2 coefficients β_i , $p_2 < p_1$ (nested!)
- The bigger model will **always** be able to fit the data at least as well as the small model.
- But does "Big" give a **significantly better** fit to the data ?
 - $\circ \rightarrow$ F test (used by ANOVA)
- \circ H_0 : "Big" does **not** give a significantly better fit than "Small"

If the null hypothesis is true, then:

$$F = \frac{\frac{SS_{res}^1 - SS_{res}^2}{p_2 - p_1}}{\frac{SS_{res}^2}{n - p_2}} \sim F(p_2 - p_1, n - p_2)$$

$$\begin{aligned} & \overbrace{\frac{1}{\sigma^2}SS_{res} \sim \chi^2(f)} \\ & \frac{\frac{\chi^2(n)}{n}}{\frac{\chi^2(m)}{m}} \sim F(m,n) \end{aligned}$$

A big value of the F-statistic would mean that there is a big difference between the sums of squares of both models. In that case, the null hypothesis is rejected.

Comparing Regression Models with ANOVA*

$$F = \frac{\frac{SS_{res}^{1} - SS_{res}^{2}}{p_{2} - p_{1}}}{\frac{SS_{res}^{2}}{n - p_{2}}} \sim F(p_{2} - p_{1}, n - p_{2}) \quad \text{under } H_{0}$$

- o here:
- \circ *F* = 1.88 (observed)
- $\circ p = 0.15$
- \circ H_0 not rejected
- both models perform equally
- $\circ \rightarrow$ choose the smaller model

Comparing Regression Models with ANOVA*

Another example:

```
anova(lm1, lm2, test = "Chisq") # comparison of nested lm1 and lm2
# Analysis of Variance Table
#
# Model 1: y ~ x1 + x2 + x3
# Model 2: y ~ x1 + x2 + x3 + x1:x3
# Res.Df RSS Df Sum of Sq F Pr(>F)
# 1 6 806403914
# 2 5 14 1 806403899 281359883 < 2.2e-16 ***</pre>
```

- Model 2 (with interaction) is significantly better (p < 2.2e 16)
- the better model has much lower lower Residual Sum of Squares (RSS)
- For the comparison to work, the models must be nested !
 - (the bigger model must include all terms of the smaller one)
- Find smallest model yielding "good" fit: Use additional predictors only if RSS is significantly reduced.

Automated Model Search

Aim: Find the smallest model which is "good enough" which means that there is no bigger model which is **significantly** better

reduced = step(Im2, direction = "backward") # shorten model stepwise

In this case, no smaller model was found (all coefficients still in "summary"):

summary(reduced)

Coefficients:					
	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	9.9565797	6.3879861	1.559	0.18	
x1	1.9762362	0.0703385	28.096	1.07e-06	***
x2	3.0086989	0.0137903	218.175	3.84e-11	***
xЗ	0.9763001	0.0188445	51.808	5.07e-08	***
x1:x3	3.9998565	0.0002609	15328.127	< 2e-16	***
	Coefficients: (Intercept) x1 x2 x3 x1:x3	Coefficients:Estimate(Intercept)9.9565797x11.9762362x23.0086989x30.9763001x1:x33.9998565	Coefficients:EstimateStd. Error(Intercept)9.95657976.3879861x11.97623620.0703385x23.00869890.0137903x30.97630010.0188445x1:x33.99985650.0002609	Coefficients:EstimateStd. Errort value(Intercept)9.95657976.38798611.559x11.97623620.070338528.096x23.00869890.0137903218.175x30.97630010.018844551.808x1:x33.99985650.000260915328.127	Coefficients:EstimateStd. Errort valuePr(> t)(Intercept)9.95657976.38798611.5590.18x11.97623620.070338528.0961.07e-06x23.00869890.0137903218.1753.84e-11x30.97630010.018844551.8085.07e-08x1:x33.99985650.000260915328.127< 2e-16

All p-values (except for the one corresponding to the intercept, which is of minor importance) are small, i.e. all corresponding coefficients $(\beta_1, \beta_2, \beta_3, \beta_4)$ are significantly different from zero. Hence, the response is actually depending on these variables, and the interaction term is necessary.

- **Categorical variables**: male/female ; smoking: yes/no ; risk: high/middle/low
- ANOVA: **all** explanatory variables are categorical
- Multiple Regression: explanatory variables can be continuous and/or categorical

Example from: <u>http://www.utdallas.edu/~ammann/stat6338/node7.html</u> see General_Reg_Models_Examples.R

```
crabs = read.csv(file="crabs.csv", header=T)
head(crabs)
```

#	Species	Gender	x1	x2	xЗ	x4	У
# 1	В	М	8.1	6.7	16.1	19.0	7.0
# 2	В	М	8.8	7.7	18.1	20.8	7.4
# 3	В	М	9.2	7.8	19.0	22.4	7.7
# 4	В	М	9.6	7.9	20.1	23.1	8.2
# 5	В	М	9.8	8.0	20.3	23.0	8.2
# 6	В	М	10.8	9.0	23.0	26.5	9.8
leve	els(crabs\$	Species) #	"B" '	0"		

"F" "M"

levels(crabs\$Gender)

categ. & continuous predictors # y is the response

www.matstat.org

Consider *y* versus x_4 for the different species (we ignore dependence on other variables for now):

```
plot(y ~ x4, data=crabs[which(crabs$Species == "B"),], col="blue"...)
points(y ~ x4, data=crabs[which(crabs$Species == "O"),], col="yellow3", ...)
```


Trends for the species fairly parallel ... i.e species "O" adds some amount to the response **independently** of x_4 . \rightarrow probably **no interaction** between "Species" and $x_4 \rightarrow$ additive model

```
lm.a = lm(y ~ x4 + Species, data=crabs) # Additive, categorical & continuous
coef(lm.a)
# (Intercept) x4 SpeciesO
# -1.3001043 0.3998935 1.5373614
beta0 = coef(lm.a)[1] # -1.3001043
beta1 = coef(lm.a)[2] # 0.3998935
beta2 = coef(lm.a)[3] # 1.537361
```

The W-R notation used above translates to the model:

 $y = \beta_0 + \beta_1 \cdot x_4 + \beta_2 \cdot I_{species} + \varepsilon$

"Species" is a categorical variable \rightarrow associated with indicator variable $I_{species}$:

$$I_{species} = \begin{cases} 0 & Species = B \\ 1 & Species = O \end{cases}$$

"B" = "base level" or "reference level", associated with the indicator value 0

www.matstat.org

$$y = \beta_0 + \beta_1 \cdot x_4 + \beta_2 \cdot I_{species} + \varepsilon$$

Calculation of slope / intercept for species "B" and "O" (when plotting y vs. x_4):

Species	Indicator	Model	Slope	Intercept
В	0	$y = \beta_0 + \beta_1 x_4 + \varepsilon$	β_1	β_0
Ο	1	$y = \beta_0 + \beta_1 x_4 + \beta_2 + \varepsilon$	eta_1	$\beta_0 + \beta_2$

We decided to go for a model without interaction between x_4 and *species*. As a result, both regression lines have the same slope, so that they are parallel. Going from species "B" to species "O" adds the amount β_2 to the response independently of x_4 . Let us add the regression lines for both species to the data:

abline(a = beta0 + beta2, b = beta1, col = "yellow3", lty = 1, lwd = 2)
abline(a = beta0, b = beta1, col = "blue", lty = 1, lwd = 2) # same slope a

see General_Reg_Models_Examples.R

www.matstat.org

abline(a = beta0 + beta2, b = beta1, col = "yellow3", lty = 1, lwd = 2)
abline(a = beta0, b = beta1, col = "blue", lty = 1, lwd = 2) # same slope a

y vs. x4 for crabs data

Changing from species "B" to species "O" (in terms of changing the object of attention) adds $\beta_2 = 1.54$ to the regression line.

Now, consider the dependence of y from x_2 for the different genders:

```
plot(y ~ x2, data=crabs[which(crabs$Gender == "F"),], col="pink", ..
points(y ~ x2, data=crabs[which(crabs$Gender == "M"),], col="green",..
```


y vs. x2

Trends for "Female" and "Male" seem to have different slopes For higer x_2 , the Gender effect is more pronounced \rightarrow a regression Model including an interaction terms is advisable

a) Try without interaction first:

```
lm.0 = lm(y ~ x2 + Gender, data=crabs) # additive model
summary(lm.0) # (shortened)
```

#		Estimate	Std. Error	t value	Pr(> t)		
#	(Intercept)	-4.23317	0.38106	-11.11	<2e-16 **	*	
#	x2	1.33144	0.02736	48.66	<2e-16 **	*	
#	GenderM	2.60617	0.14047	18.55	<2e-16 **	* #	baselevel

According to Wilkinson-Rogers notation, y ~ x2 + Gender translates to

$$y = \beta_0 + \beta_1 \cdot x_2 + \beta_2 \cdot I_{gender} + \varepsilon$$
$$I_{gender} = \begin{cases} 0 & Gender = Female\\ 1 & Gender = Male \end{cases}$$

Gender	Indicator	Model	Slope	Intercept
\mathbf{F}	0	$y = \beta_0 + \beta_1 x_2 + \varepsilon$	eta_1	β_0
Μ	1	$y = \beta_0 + \beta_1 x_2 + \beta_2 + \varepsilon$	eta_1	$\beta_0 + \beta_2$

```
lm.0 = lm(y ~ x2 + Gender, data = crabs) # additive model
summary(lm.0)
beta0 = coef(lm.0)[1] # -4.233172
beta1 = coef(lm.0)[2] # 1.331443
beta2 = coef(lm.0)[3] # 2.60617
slope.female = beta1
icept.female = beta1 # same slope as female
icept.male = beta1 # same slope as female
icept.male = beta0 + beta2
abline(a=icept.female, b=slope.female, col="pink", lty=1, lwd=2)
abline(a=icept.male, b=slope.male, col="green", lty=1, lwd=2)
```

abline(a=icept.female, b=slope.female, col="pink", lty=1, lwd=2)
abline(a=icept.male, b=slope.male, col="green", lty=1, lwd=2)

y vs. x2

It seems that a model yielding the same slope for both datasets (Female, Male) does not work → interaction term needed

b) Model with interaction:

lr sı	<pre>n.b = lm(y ~ ummary(lm.b)</pre>	x2*Gender, # (short	data=crabs) ened)	# with i	nteractior	1
#		Estimate	Std. Error	t value	Pr(> t)	
#	(Intercept)	-2.29012	0.42271	-5.418	1.76e-07	***
#	x2	1.18737	0.03072	38.651	< 2e-16	***
#	GenderM	-2.11660	0.63564	-3.330	0.00104	**
#	x2:GenderM	0.37590	0.04962	7.575	1.38e-12	***

According to Wilkinson-Rogers notation, y ~ x2*Gender translates to

$$y = \beta_0 + \beta_1 \cdot x_2 + \beta_2 \cdot I_{gender} + \underline{\beta_3 \cdot x_2 \cdot I_{gender}} + \varepsilon$$
$$I_{gender} = \begin{cases} 0 & Gender = Female\\ 1 & Gender = Male \end{cases}$$

www.matstat.org

$$y = \beta_0 + \beta_1 \cdot x_2 + \beta_2 \cdot I_{gender} + \beta_3 \cdot x_2 \cdot I_{gender} + \varepsilon$$

This is a model yielding different slopes and intercepts for both genders.

```
lm.b = lm(y ~ x2*Gender, data=crabs) # with interaction
beta0 = coef(lm.b)[1]
beta1 = coef(lm.b)[2]
beta2 = coef(lm.b)[3]
beta3 = coef(lm.b)[4]
slope.female = beta1
icept.female = beta1
icept.female = beta0
slope.male = beta1 + beta3
icept.male = beta0 + beta2
plot(y ~ x2, data=crabs[which(crabs$Gender == "F"),], col="pink", ...
points(y ~ x2, data=crabs[which(crabs$Gender == "M"),], col="green", ...)
abline(a=icept.female, b=slope.female, col="pink", lty=1, lwd=2)
abline(a=icept.male, b=slope.male, col="green", lty=1, lwd=2)
```


- A model including interaction provides a better fit.
- The regression lines for different genders have different slopes.

- The factor "Gender" considered above had two levels: female / male \rightarrow we needed one indicator variable I_{gender} to build a regression model
- In general: Factors with *L* levels require L 1 indicator variables.
- Let us look at a categorical variable with 3 levels:

```
effect = read.csv(file = "Effects.csv", header = T)
levels(effect$effect) # "moderate" "strong" "weak"
plot(y ~ x4, data=effect[which(effect$effect == "weak"),],....
points(y ~ x4, data=effect[which(effect$effect == "moderate"),], ....
points(y ~ x4, data=effect[which(effect$effect == "strong"),], ....
```


The trends for the different levels are fairly parallel \rightarrow no interaction between the categorical variable "effect" and the continuous variable $x_4 \rightarrow$ use additive model

No interaction, use additive model:

```
fit <- lm(y ~ x4 + effect, data = effect) # additive
summary(fit) # shortened
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 1.624953 0.232370 6.993 4.14e-11 ***
# x4 0.400579 0.006268 63.908 < 2e-16 ***
# effectstrong 3.462941 0.118086 29.326 < 2e-16 ***
# effectweak -6.001887 0.110700 -54.217 < 2e-16 ***</pre>
```

According to Wilkinson-Rogers notation, $y \sim x4 + effect$ translates to

$$y = \beta_0 + \beta_1 \cdot x_4 + \beta_2 \cdot I_1 + \beta_3 \cdot I_2 + \varepsilon$$

$$I_1 = \begin{cases} 0 & effect = moderate \\ 1 & effect = strong \\ 0 & effect = weak \end{cases}$$

$$I_2 = \begin{cases} 0 & effect = moderate \\ 0 & effect = strong \\ 1 & effect = weak \end{cases}$$

The level moderate is chosen as base level because it comes first in the alphabet (the command levels () lists the base level first)

$$y = \beta_0 + \beta_1 \cdot x_4 + \beta_2 \cdot I_1 + \beta_3 \cdot I_2 + \varepsilon$$

 $I_{1} = \begin{cases} 0 & effect = moderate \\ 1 & effect = strong \\ 0 & effect = weak \end{cases} \qquad I_{2} = \begin{cases} 0 & effect = moderate \\ 0 & effect = strong \\ 1 & effect = weak \end{cases}$

Effect	I_1	I_2	Model	Slope	Intercept
moderate	0	0	$y = \beta_0 + \beta_1 x_4 + \varepsilon$	eta_1	β_0
strong	1	0	$y = \beta_0 + \beta_1 x_4 + \beta_2 + \varepsilon$	eta_1	$\beta_0 + \beta_2$
weak	0	1	$y = \beta_0 + \beta_1 x_4 + \beta_3 + \varepsilon$	eta_1	$\beta_0 + \beta_3$

Levels are ordered according to the alphabet. The level "moderate" is the base level, both indicators are assigned a zero value. The level "strong" is connected with value 1 for I_1 , "weak" is connected with value 1 for I_2 .

	Effect	I_1	I_2	Model	Slope	Intercept	
	moderate	0	0	$y = \beta_0 + \beta_1 x_4 + \varepsilon$	β_1	β_0	
	strong	1	0	$y = \beta_0 + \beta_1 x_4 + \beta_2 + \varepsilon$	eta_1	$\beta_0 + \beta_2$	
	weak	0	1	$y = \beta_0 + \beta_1 x_4 + \beta_3 + \varepsilon$	β_1	$\beta_0 + \beta_3$	
<pre>coef(fit) # (Intercept) # 1.6249534 beta0 = coef(beta1 = coef(beta2 = coef(beta3 = coef(slope.moderat</pre>	0.4005 fit)[1] # fit)[2] # fit)[3] # fit)[4] # .e = beta1	x4 791 1.62 0.40 3.46 -6.0	effe 3 4953 0579 2941 0188	ctstrong effectweak .4629406 -6.0018875 (Intercept) 1 x4 effectstrong 7 effectweak	/~ 1		
<pre>inter.moderat slope.strong inter.strong slope.weak = inter.weak =</pre>	e = beta0 = beta1 = beta0 + beta1 beta0 + be	beta ta3	2			$\langle \mathcal{L} \rangle$	

```
abline (a = inter.moderate, b = slope.moderate, col = "yellow3", lty = 1, lwd = 2)
abline (a = inter.strong, b = slope.strong, col = "red", lty = 1, lwd = 2)
abline (a = inter.weak, b = slope.weak, col = "blue", lty = 1, lwd = 2)
```


Multiple Regression Models - Comparison of models -

Show that lm.b (with interaction) is better than lm.0 (no interaction):

```
anova(lm.0, lm.b, test="Chisq") # F-statistic = ratio of two chi^2
# Analysis of Variance Table
#
# Model 1: y ~ x2 + Gender
# Model 2: y ~ x2 * Gender
# Res.Df RSS Df Sum of Sq Pr(>Chi)
# 1 197 177.83
# 2 196 137.55 1 40.272 3.586e-14 ***
```

The p-value indicates that there is a significant difference between the performance of the two models. Model 2 (with interaction) is the better model - the residual sum of squares (RSS) is lower.