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with R

Part I: Simple Linear Regression
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Outline

1. Simple Linear Regression

1. The statistics behind the output of "1m"
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1. The Simple Linear Regression Model

o May not be useful in many cases
o ..but can be used to explain how regression works
o see Reg_Models_Examples.R

data (thuesen, package = "ISwR")
thuesen = thuesen|[complete.cases (thuesen), ]
head (thuesen)

Left common
carotid artery

Left subclavian

Brachiocephalic artery artery

# blood.glucose short.velocity Superior vena cava T?I
eft pulmonar
# 1 15.3 1.76 Right pulmonary arteries arterri)es y
# 2 l O . 8 l . 3 4 Right pulmonary veins \I;gifégulmonary
Left atrium
# 3 8 -1 1. 21 ~ Right atrium s Semilunar valves
# 4 1 9 ) 1.47 < N | Atrioventricular
Atrioventricular 4, (mitral) valve
# 5 7 . 2 1 . 2 7 (tricuspid) valve I\ = Left ventricle
# 6 5.3 1.49 Chordae tendineae \ AR : Septum
Right ventricle
7 9.3 1.31
i 8 l l l ]_ O 9 Inferior vena cava

plot (short.velocity ~ blood.glucose, data=thuesen,
main="Measurements", col="red", font.main=1)
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plot (short.velocity ~

The Simple Linear Regression Model

"Measurements",

col = "red",

blood.glucose,

font.main

Measurements

data=thuesen,

1)

main

1.8

o Not thrillingly linear
o ..butlet's give ita try

short.velocity
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blood.glucose
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The Simple Linear Regression Model

o Aim: find functional relationship between blood glucose and velocity
o try with linear relationship:

y; = o+ fr; +¢e; with & ~ N(0,0)

signal + noise (= &)
deterministic + probabilistic

o x :independent variable, predictor, regressor, explanatory variable,
covariate, ...
o y:dependent variable, response, ...

We assume that the noise is normally distributed (Central Limit
Theorem) with zero mean:

e; ~N(0,0) = Yi~N(a+ pr;,o0)
When the assumption is valid, each response variable Y; is also normally

distributed, with mean a + f - x; and standard deviation ¢ (However,
a, f and o still unknown — estimation)
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The Simple Linear Regression Model

Assumptions:

o ¢; normally distributed

o ¢; independent

o equal variance assumption (homoscedasticity: same o for all ¢; )
o x; known - not random !

A
6 y gi~N(0,0) =

YL'NN(O!—FBQ%',O')

Picture Source: Wackerly et al.,
¥ ISBN 0-534-37741-6
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Estimation of a, 3, and o
Least Squares Method

Vi @® measurements
----- regression line
*® ¢ -
I €§I,/
€5 - .
o [1Pe Minimize the sum of the squared
ol /"ig errors (between estimated curve
/ ,'; - i * and measured data points)!
31? T Yi = a+ Br; + &
”'/ ® > a + ﬂ x3 1 1 1
- * * *
yi = o + 07w
L L IJ L1 1 >
1 1 1 LI} T
X1 Xy X3 X4 Xe  Xi &i ™~ N(OaU)
k
& =Yi—Y;
n n
2 .
SSyes = E 8? = E (y; — (@™ + B%x;))° => Minimum
i=1 i=1

That’s essentially the idea of least squares !
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Least Squares Method*

Find those a and £ that make SS,.. as small as possible (partial derivations
must be zero):

9SSes )
e 2 g o — B*x;) =0
8SS7“68 2 : * *

Two algebraic equations for two unknowns a and . We find for a and
(see Appendix):

)
'S

I

3 = and o =9y — 3%

-
H
H

S,y =

Y

-

(@i=2) (i —9)  Se=) (@i—2

=1 i=1

These quantities can be completely calculated from the sample (from

the y; and x;). Note: a* and B* are random variables (depend on
sample: new sample > new & — y; = Sy, = a’— ..
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An estimator for the standard deviation
of the noise (o)

We found the parameters a and £ that minimize the residual Sum of Squares:

n

SSres — 25? — Z (yz — (a* + B*xz>)2 —> Minimum
1=1

1=1

The minimum value is then: (insert the calculated values of a
and f into the expression for S§5,..5):

T

SS’.IE}ES SSTES(&*::S*) — Z (yi —a’ — .-S*iri)z

P

using (see Appendix):
j=a"+ 47

1
I
N
+
@
=
~
I
HH
T

I
[
|
S
|
oy
Ea
=
|
=i
T

, This minimum can be used to estimate
= Syy — 1Iy /Szz the variance of the error terms ¢; —



An estimator for the standard deviation
of the noise (o)

S =857

TeSs

S =+/5S% _/(n—2) unbiased estimator for &

/(n —2)  unbiased estimator for g2

Absence of bias can be confirmed by just calculating the expectation
value of the above expression for S2 (calculation not shown here):

E (SQ) = o°

This formula means that S? is an unbiased estimator for o2 :

o if many samples were taken,

o ..and many S? were calculated,

o ... their mean would come close to the true ¢?

o .. without systematic error

o the more samples are taken, the closer comes S%to g2
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Calculation of the regression line

Now, an estimation of the response is avaiable for arbitrary predictors x:

3k *k *k
i o = o + 57 - 2o
Yi
-~ < :
* -7
e
Ho et
o7
- H . l .
et i regression line (------------- ):
-7 i * estimation for slope: B*
” - 1 . . .
.7 : * estimation for intercept: a*

]
]
]
]
a* !
i
]

' >
1

X0 Xi

O Xo can be located between measured values x; (— prediction)
o a”and B* are random variables = p; is a random variable
(changes with each new sample).
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Calculating the regression line

see Reg Models_Examples.R R
x = thuesen$blood.glucose
y = thuesen$short.velocity
Sxx = sum((x - mean(x))”"2) # 429.7043
Sxy = sum((x - mean (x))*(y - mean(y))) # 9.437391
Syy = sum((y — mean(y))"2) # 1.193365

# estimated slope of regression line:

beta.star = Sxy/Sxx # 0.02196252

# estimated intercept of regression line:

alpha.star = mean(y) - beta.star*mean(x) # 1.097815

plot (short.velocity ~ blood.glucose, data = thuesen, main =

"Measurements and Regression Line", col="red", font.main=1)

abline (a=alpha.star, b=beta.star, col="darkgreen", 1lty=2, 1lwd=2)
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short.velocity

1.6 1.8

1.4
]

1.2

1.0

How reliable is the regression line?

see Reg Models_Examples.R R
Measurements
. Questions:
o How sure can we be about the
. obtained result ?
. o If we took a new sample from the
same population: how much
R - would the new regression line
- -

- deviate from this one ?

(U o when taking a new sample: could
LT *7 t. it also be possible to get a
-3, " regression line with slope zero,
. s indicating that x and y are not
. ¢ related ?

m_: L "?
5 10 15 . © Istheresult "significant™

blood.glucose
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How reliable is the regression line?

o Exclude the possibility that the result is spurious, just emerging from the
current sample
o Important: if the slope is "significantly” different from 0, we have some
support that y really depends on x

response

0.0 0.5 1.0

-0.5

-1.0

-1.5

-2.0

predictor
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Red points: high variance in the
data, slope depends very much
on particular values, changing
few values could change the
slope essentially

Green points: low variance, slope
seems to be fairly justified

For situations not so extreme:

A test is needed to show if a data
set yields a “justified” slope (a
slope which is significantly
different from zero)



Sampling Distribution
(of the estimated parameters)

o Slope and intercept estimated from a sample deviate from the true but
unknown values (limited sample size, random noise).

o new sample = new y;'s = new values for slope and intercept

o If we measure many sets of y; and calculate slope and intercept for each of
this sets, we observe a distribution of estimated slopes and intercepts.

o This is called sampling distribution.

betal <- numeric (1000)

R’

for (i in 1:1000) {

xi = seq(l,10,1len=10) # not random

yi = 1 + rnorm(10, mean=0, sd=1) # v not depending on x !
Sxx = sum((x1i - mean(xi))"2)

SXy = sum((xi - mean(xi))*(yi - mean(yi)))

betai[i] = Sxy/Sxx # estimated slope for sample 1

}

hist (betai, breaks=25, main="Distribution of 1000 estimators
of the slope", font.main=1, col="red", xlab="estimated
slope™)
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Frequency

20 30 40 50
1
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1

Sampling Distribution for the estimated slope

Distribution of 1000 estimators of the slope

|
-0.3

|
-0.2

|
-0

| |
0.0 01

estimated slope

T
0.2

|
0.3

Example: 30 samples yield a slope
between 0.16 and 0.18

... but the true slope is zero (y does
not depend on x)

The estimated slopes inferred from
some samples could make us believe
the slope has some non-zero value,
leading us to the false conclusion
that y actually depends on x.
Conclusion: we have to test if our
estimations are significant
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Probability distributions of the estimates

What probability distributions do a™, B and py have?

N

LY

5 =

and o =y— "%

-

K
H
=

Sy =

u

(x; — ) (yi — ) Sxx:Z(in’—_

1 =1

M-

T

With some calculus © (see Appendix), we get:

_ ZC' i with ¢ — Li— X o a”and S are linear
v ! S combinations of the y;
o because the y; are normally
Zd Yi with d; = — — ¢;F distributed, the a* and B* are
as well
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Probability distributions of the estimates

The estimates a*, §*, u, are normally distributed. Expectation values, variances

and standard deviations can be calculated:

E (8*) =...= [ unbiased estimator (see Appendix for derivation)
2 n
o
V(E*)=...= 5 consistent, because S,, = Z (z; — z)° = 00 for n — oo
T i=1
E(MS):E(O&*—Fﬁ*'ZCQ):E Z(dZ-I-CzLEQ)Y;] :...:Oz—l-ﬁ°£l?0:u0

Ci=1

V(,u?;):V(a*—I—B*-:L’o):V-i(%%—Ci-(a:o—az)) Y,

| =1
—\2
1 — 1

Expectation and variance for a* follow from the corresponding expressions for y,
by setting x, = 0. Note that the variance of y; is big when x; is far from Xx.
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Probability distributions of the

estimates
« o distribution for the slope
g7~ N | B, N estimation (if &~ N )

1 72 distribution for the intercept
Q, 04— + estimation (if & ~N)
n

1 (o — 7)?2 distribution for the points on
MS ~ N | po, 0\/— + o — & the regression line (if ¢, ~N)
n
_|_

Szx (xg = 0 — distribution for «a)

All estimators are unbiased and consistent.
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Finding a Pivot variable for testingif f§ = 0

To establish a test, we need a pivot variable:

1. includes the parameter of interest (parameter the hypothesis is about, e.g. 5)
2. all other quantities must be known (calculated from the sample)
3. the probability distribution of the pivot variable must be known

. pivot variable, t-distributed with (n — 2)

"B t( d f freed

~ t(n — 2) egrees of freedom
se (5*)

=5/ /S... standard error for estimator of the slope
S = \/S es/ n— )

Minimum residual deviance

SSS@S_S?J?J_ , /Sa::n

(see below)
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Finding the Pivot variable (*)

O

B* ~ N(B, ) dlstcrlbu.tlon fpr the slope
Sz estimation (if &~ N)

* N

7 = u ~ N(O, 1) standard normal, but not a
0/ Sea pivot (because o is unknown)
n
sSSP = Z £ sum of squares for residuals
i=1

§go n £:1\ 2 sum of squares of independent
5 = Z (—) ~x%(n —2)  N(0,1)-variables is y2-distributed

o : o
1=1
Z Z
——— ~t(n) generallyvalidforalln = ~ t(n —2)
x2(n) [ x*(n—2)
n n—2
Z ~ t(n _ 2) now, insert the N (0, 1)-distributed
SSPes variable (above) —
02 (n—2)
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Finding the pivot variable (*)

------------------------- s*—p
e 7 = ~ N(0,1)
3 0/\ Sza
B —B
J/SV 5;”‘”” ~ t(’n, — 2) the unknown o can be cancelled !
o2 (n—2)
p _05 ~ t(n — 2) S = \/557968/@ —2)  estimation for o
SST’@S
\/Smx (n—2)
p*—p ~ t(n — 2) Pivot!: everything known from sample
S/ S except for f (which we want to test)
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Pivot variable if true o is unknown*

o Replacing the true (but unknown) o by it's estimate S
o probability distribution shifts therefore from N to the somewhat broader t-
distribution. This reflects the increase of uncertainty.

fx (x) < N(0.1)

£(5) N

i _"I\"r

(narrow)

~

t(2) ) :
~ S/ Sz (broad)

t(1)

2y — (45
f(t) = 2 (1 | t_) ' Probability density function

v = degrees of freedom

www.matstat.org



Testing the hypothesis =0

Hy: B =0 — e
8*—0
S/\/S,.

t-statistic (just a number)

~t(n —2)

a : significance level
fx(x) t (area exxegerated in the plot)
We do not reject H, if the value of
the t-statistic calculated from the
sample lies well within the
distribution expected under H,,.
ty(n—2) The plot corresponds to a one-sided
\ test. For a two-sided test, an area of
— _J

(n—2)
\/_/ %/, must be tagged in both tails.
Y

Hy notrejected if  Hj rejected if
tis here tis here
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Calculating the p-value belonging to the slope

______
---------------
-~
~
~
~
~
~
-~
-~
~
-~

n = length (x)

df = n-2 # 23 degrees of freedom
SSres0 = Syy - Sxy™2/Sxx # 0.9860963 residual deviance
s = sqrt (SSres0/df) # 0.2166956 estimated sigma
se.beta = s/sgrt (Sxx) # 0.01045358 standard error

t = beta.star / se.beta # 2.100957 t-statistic

p.value = 2*pt(t, df=df, lower.tail=FALSE) # 0.0468 two-sided test

For SSres0, see page 9
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Simple Regression using "1m"

see Reg Models_Examples.R

Im.out = 1lm(short.velocity ~ blood.glucose, data = thuesen)
lm.out

# Call:

# Im(formula = short.velocity ~ blood.glucose, data = thuesen)
#

# Coefficients:

# (Intercept) blood.glucose

# 1.09781 0.02196

These are the same results for slope and intercept as obtained above (page 12)
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More 1m-output by using summary

summary (1m.out) R
# Call:

# Im(formula = short.velocity ~ blood.glucose, data = thuesen)
#

# Residuals:

# Min 10 Median 30 Max

# -0.40141 -0.14760 -0.02202 0.03001 0.43490

#

# Coefficients:

# Estimate Std. Error t value Pr(>|t])

# (Intercept) 1.09781 0.11748 9.345 6.26e-09 ***

# blood.glucose 0.02196 0.01045 2.101 0.0479 ~*

# -

# Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

#

# Residual standard error: 0.2167 on 21 degrees of freedom

# Multiple R-squared: 0.1737, Adjusted R-squared: 0.1343

# F-statistic: 4.414 on 1 and 21 DF, p-value: 0.0479

Suggestion: let's try to understand the output of summary (1m.out):
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Residuals

# Residuals:
# Min 10 Median 30 Max
# -0.40141 -0.14760 -0.02202 0.03001 0.43490

*

Ei =Y; — VY Difference between measured and fitted points
residuals = resid(lm.out) # another extractor function
summary (residuals) # the usual summary command
# Min. lst Qu. Median Mean 3rd Qu. Max.

# -0.40140 -0.14760 -0.02202 0.00000 0.03001 0.43490
# mean=0 as expected (normal egns.)

Possibility to (roughly) check the assumptions:

o median close.to Zero | g, ~ N (07 0)
o skewness (N is symmetrical)
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Estimated coefficients, their standard errors,
t-statistic and p-values

# Coefficients:

# Estimate Std. Error t wvalue Pr(>|t])

# (Intercept) 1.09781 0.11748 9.345 6.260e-09 **x*

# blood.glucose 0.02196 0.01045 2.101 0.0479 ~*

S 0
*
se(87) = 5 S = s SSres = Syy — Sgy/sa:x
n—2

SSreg0 = Syy - Sxy”"2/Sxx
s = sqrt (SSreg0/ (length(x)-2))
se.beta = s/sqgrt(Sxx) # 0.01045358

B

t = se (%) (page 15, for B = 0)

t = beta.star / se.beta # 2.100957
p.value = 2*pt(t, df=length(x)-2, lower.tail=FALSE) # 0.04789591
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H H FH FH H S+

Significance codes

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 1.09781 0.11748 9.345 ©6.26e-09 **x*
blood.glucose 0.02196 0.01045 2.101 0.0479 ~*

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error

# Residual standard error: 0.2167 on 21 degrees of freedom
# Multiple R-squared: 0.1737, Adjusted R-squared: 0.1343
# F-statistic: 4.414 on 1 and 21 DF, p-value: 0.0479

0
S = SSTGS Ssv(")es — Syy o Sgy/SZL’CE

n—2

s = sqrt (SSreg0/(n-2)) # 0.2166956 estimation for sigma
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Coefficient of Determination
("How good is the fit?")

# Residual standard error: 0.2167 on 21 degrees of freedom
# Multiple R-squared: 0.1737, Adjusted R-squared: 0.1343
# F-statistic: 4.414 on 1 and 21 DF, p-value: 0.0479

A

Yi
- S
s The y-values vary for two reasons:
[ ,r"’ .
& -~ le, 1. because they change with x and
o 1 ¢ 2. because of the noise g;
€11 .- @2
; ; f >
X1 X; X3 X4 Xe  Xi

Want to find out:

o How much of the total variance of y can be explained by the linkage to x (i.e.
by the signal) and

O .. how much must be considered as random noise (left unexplained)?
o The lower the random noise compared to the signal, the better the fit.
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Coefficient of Determination
- Subdividing the variation -

Subdivide the total variation SS;,; into two parts:

A Sums of squares:
Yi
: S = Y (-7
yi—" ¢ P tot = Yi — Y
,/';y* :
@ ’r"<— l 9
] -7 = - — arF -
""""""""""" T Y *E’S’reg — E (yi — y)
e -1
LT SSpes = yi —yi)’
{’,' res T (yz - 'y?' )
I L [l 1 L1 1 > .EI
X1 Xy X3 X4 Xg X SSth = SSTE_Q‘ -+ SST‘EE

y : grand mean; y;: measured points; y;:estimated points

SS;¢ot: total Sum of Squares, regression + random noise
SSreg: Sum of Squares for regression, describing the change by linkage to x

S5S,¢s: Sum of Squares for residuals, describing random noise
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Coefficient of Determination
- Definition -

# Residual standard error:

# Multiple R-squared:
# F-statistic:

SS

R2

SSreg 1 SSres .
SStot B Sa;m ) Syy

1

*gé%ot B

o R?isbetween 0 and 1
o R? = 1is perfect!

.tot
SS.
SS.
SS.
R.squared =
R.squared =

reg
res
tot

/

sum((y — mean(y))"2)
sum( (y.hat - mean(y))"2)
sum(resid(lm.out) *2)

(

R.squared

SS.reg + SS.res)
SS.reg/SS.tot

1 - SS.res/SS.tot

Sxy"2/ (Sxx*Syy)

0.1737,

0.2167 on 21 degrees of freedom

2
Sty

Adjusted R-squared: 0.1343
4.414 on 1 and 21 DF, p-value: 0.0479

Definition

i
i
i
i
i
i
i

1.
0
0
1
0
0
0

1933
.2072 deviance by regression

.9861 deviance by noise g,

ok

.17368 as 1in summary above
.17368 same
.17368 same
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How well did the fit work?

4 A
Y y R close t
R close to zero close to one
o _. o _.
[ ] ’,’ ‘,0
7 e s
’/’ .’l’
o .- ‘e ®
- ® .,/,
e ,”’ L ® ,0"/.
’/” X ”’ X
— —p

52 —yF)?
R* = 5 x% =1- 2 W y_z )2 Coefficient of determination
zx " Oyy > (Y — 9)

poor fit — 0 < R? < 1 <« good fit

_ Cxy correlation coefficient

R? = r2 (for simple linear regression) Tyy = .
xy (for simple linear regression) Ty Sy *Sy  Cxy = covariance
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R?2 and the Pearson correlation

coefficient™
SQ
R? = Y Coefficient of determination
> (2 —T) (y; = 7) S
i=1 T
r= — . & ; — 5 yS Pearson correlation
\/zl(:ca—f) > - VI

Coefficient of determination and Pearson correlation coefficient are the same.
This is valid for simple linear regression, i.e. if we have one independent
variable only (see below for regression with multiple independent variables).

r = Sxy/sqrt (Sxx*Syy) # 0.4167
cor (blood.glucose, short.velocity, method="pearson") # 0.4167
r"2 # 0.1736844 = R?

R.squared # 0.1736844 same! see Reg_Models_Examples.R
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Adjusted Coefficient of Determination®

# Residual standard error: 0.2167 on 21 degrees of freedom
# Multiple R-squared: 0.1737, Adjusted R-squared: 0.1343
# F-statistic: 4.414 on 1 and 21 DF, p-value: 0.0479

n—1 p is the number of independent

n—p—1 variables used in the model

R, =1- (1- R?)

‘addj

n = length(x) # 25
p =1 # number of independent variables
R2.adjusted = 1-(1-R.squared)* (n-1)/(n-p-1) # 0.134336 ok

o Adjusted R-squared: compares explanatory power of regression models
with different numbers of predictors (x4, x5, x3, ...)

o Ingeneral: using more predictors, a better fit can always be achieved.

o The usual R* always increases when new predictors are added.
o The adjusted R? increases only if the new term improves the model
significantly.
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The F-Test for Analyzing the Variance*

# Residual standard error: 0.2167 on 21 degrees of freedom
# Multiple R-squared: 0.1737, Adjusted R-squared: 0.1343
# F-statistic: 4.414 on 1 and 21 DF, p-value: 0.0479

Test: Hy: £ =0

o If the null hypothesis is rejected: the predictor “explains” the response
o If not: no evidence for a linkage between x and y

This relationship is generally valid.

2 O
X—én) ~ F(m.n) o F(m,n) : F-distribution
x2(m) ’ o m: numerator degrees of freedom
m
0O

n: denominator degrees of freedom
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The F-Test for Analyzing the Variance*
1 1 +2
i S5res = 2 Y~ = Y @i - 9)°

o o2

because y;:a*—|—5*xz and g:a*_|_ﬁ*j —>yf—?j=6*(x2—a?")

n

%2
388y = DSy becawse Sew =3 (ni— )’
o ) 1=1

X 2
%Sgreg — (5—> remember: o/,/S,, is the standard deviation of §*
o 0/ Sz and f is the mean of f* (page 19)

We assume Hy: B = 0, so that E(8*) = 0. It follows that SS,.,/0? is a square of a
normally distributed variable, i.e. it is y? - distributed with one degree of freedom.

1 2
Here, we estimated 2 parameters: a, 5. A general expression for p parameters is
1
_QSS’reg ~ X2(p — ]-)
o
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The F-Test for Analyzing the Variance*

1 1 * 1 ! i
—5 5 res = ;;(yi—yi)2=§;5322(2>

1

Remember that ¢; ~ N(0, o), so that each term of the sum is a
square of a normally distributed variable. It follows that

1
;SSMS ~ X2(’n — 2)

because we estimated 2 parameters: «, 5, and therefore loose two
degrees of freedom. A general expression for p parameters is

1
?S‘Sres ~ XQ(n _p)
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The F-Test for Analyzing the Variance*

x*(n) o This relationship is generally valid.
n A et

() F(m,n) o F(m,n) : F-distribution
m

1
We have seen that ;S‘Sreg ~ X2 (p—1)

1
and —Ssres ~ x* —
< X" (n —p)
Therefore, we have
1 SSreq Xp-1
2 51 -1
% ~F(p—1,n—p) (unknown o cancels) ngzn—_;)
7 I
SSreqg
F = Sps:; ~F(p—1,n—p)| ..ifHyistrue,ie. f =0
n—p

If we want evidence for a functional relationship between x and y, we have to
reject the H,.
Uwe Menzel, 2014



The F-Test for Analyzing the Variance*

# Residual standard error: 0.2167 on 21 degrees of freedom
# Multiple R-squared: 0.1737, Adjusted R-squared: 0.1343
# F-statistic: 4.414 on 1 and 21 DF, p-value: 0.0479

SShre
P P F(p—1n—p) p : number of parameters,
T )

SS,es here:p = 2 (a, B)
n—p
fx(x) o Hy: =0

0.20
I

o F gets big if the regression variation
is big compared to the residual
variation

o If F gets big, we reject the null
hypothesis, i.e. we consider f as
significantly diffwrent from zero.

X ~F(1,21)

015
I

010
I

area = 0.0479

0.05
I

F = 4.414 is the observation

0.00
|
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The F-Test for Analyzing the Variance*

# Residual standard error: 0.2167 on 21 degrees of freedom
# Multiple R-squared: 0.1737, Adjusted R-squared: 0.1343
# F-statistic: 4.414 on 1 and 21 DF, p-value: 0.0479

Ssreg
_ p—1 p : number of parameters,
F_%NF(p L,n—p) here: p = 2 (a, B)

n—p
num.params = 2 # number of regression parameters
n # 23 , number of data points
df.reg = num.params - 1 # 1 df for regression variation
df.res = n - num.params # 21 df for residual wvariation
F = (SS.reg/df.reqg)/(SS.res/df.res) # 4.414018

p.value = pf(F, df.reg, df.res, lower.tail = FALSE) # 0.04789591

Simple linear regression (p = 2): same p-value for F-test as for t-test:

# Coefficients:

# Estimate Std. Error t value Pr(>|t])
# (Intercept) 1.09781 0.11748 9.345 6.20e—-09 **x*
# blood.glucose 0.02196 0.01045 2.101 0.0479 ~*
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The F-Test for Analyzing the Variance*

Why is the p-value the same as for t-test?

— ~ F(m,n) F-distribution, general

x2%(1) is a square of a standard-

~ F(1,n) for numerator df =1  nhormal variable
n = 1 (simple linear regression)

If we take the square-root of this, we get:

Z
~ t(m) t-distributed F = t? for simple linear regression
x?(m)
" remember that ———= ~ t(m) is generally valid for all m
x?(m)
m

(SS.reg/df.reg)/ (SS.res/df.res) # 4.414018
= beta.star / se.beta # 2.100957
~2 # 4.414018 same as F

+ =
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The F-Test is what ANOVA does

o In general, ANOVA compares two variances

o With regard to regression, ANOVA performs the same analysis as above
o ANOVA “knows” what to do with an 1m object

anova (lm.out) # apply ANOVA to 1lm object
# Analysis of Variance Table
# Response: short.velocity

# Df Sum Sq Mean Sq F value Pr (>F)
# blood.glucose 1 0.20727 0.207269 4.414 0.0479 =
# Residuals 21 0.98610 0.046957

o These are the same numbers as obtained above.

o Later we will see that ANOVA can also be used to compare the
performance of two regression models (by comparing the residual
variances of both models).
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Checking the Assumptions of the
Model

Assumptions:

o Residuals ¢; normally distributed

o Equal variance assumption (homoscedasticity): same o for all ¢;
o Residulas ¢; independent

Eq NN(O,O‘)

www.matstat.org



Sample Quantiles

Normality of the Residuals

Create Quantile-quantile (QQ-) plot with the residuals:

ggnorm (resid (1lm.out),
ggline (resid (1lm.out),

04

02

0.0

-0.2

-04

Normal Q-Q Plot

col
col

o
o O’C’) je

Theoretical Quantiles

"blue", cex = 1.3) # Q0-plot
"red", 1ty = 2)

A  QQ-plot compares empirical
quantiles (obtained from the data)
with the quantiles deriving from some
theoretical distribution. The function
ggnorm compares empirical
quantiles with the quantiles of the
normal distribution. The data do not
conflict with the assumed distribution
if the data points roughly follow the
line created by ggline. Deviations
occur often at both ends, indicating
deviations in the tails of the
distribution.



Normality of the Residuals

R provides also a number of functions to test for normality. The null
hypothesis of the tests is that the data are normally distributed. If the null
cannot be rejected, we have no evidence that the data deviate from a
normal distribution, i.e. we may accept that the data is normally
distributed. Note that failure of H,-rejection does not proof that the data is
normally distributed. There might simply be to few data to give the test
enough power. Some functions are:

o Shapiro-Wilks test

o Kolmogorov-Smirnov test

o Anderson-Darling test

res = residuals (lm.out)

shapiro.test (res) # p-value = 0.08173

# ks.test needs notional mean and sd, use estimate
SSres0 = Syy - SxyAZ/Sxx ; s = sqgrt (SSres0/ (n-2))

ks.test (res, "pnorm", mean = 0, sd = s) # p-value = 0.2134
library(nortest) # for ad.test
ad.test (res) # p-value = 0.02418
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Equal variance assumption

Plot residuals vs. fitted values:

fitted = fitted(lm.out)

resid = residuals(lm.out)
plot (fitted, resid, col = "blue", cex = 1.5, cex.lab = 1.3)
< o
o 7| [
0 o plot should not show any
o | C structure (shape of a cone etc...)
- o plot (lm.out)shows more
© o diagnostic plots
o S 4 0% 5 © 0o
= s}
o o o ©
o | O @ Oo ©
I ]
S o
1.20 1.25 1.30 1.35 1.40 145 1.50
fitted
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ACF

08 1.0

06

0.0 02

-0.2

Independence of the Residuals

Plot auto-correlation of the residuals:

acf (resid (1lm.out))
main = "")

auto.cor =
plot (auto.cor,

Autocorrelation is the correlation of a
signal with a delayed copy of itself as
a function of the delay (Wikipedia). A
high value of autocorrelation for
some lag indicates that there is some
repeated pattern in the data. Because
the residuals are assumed to be
independent we do not expect such a

pattern, but expect that the
autocorrelation low, i.e. within the
confidence limits (--------- ) for all

lags, except for lag 0.



Independence of the Residuals

Independence can also be tested in R:

o Box-Pierce or Ljung-Box test
o Hy: independence

res = residuals (lm.out)

Box.test (res, lag = 1, type = "Box-Pierce") # p-value = 0.8718
Box.test (res, lag = 2, type = "Box-Pierce") # p-value = 0.8314
Box.test (res, lag = 1, type = "Ljung-Box") # p-value = 0.8634

All p-values are = 0.05. We can not reject the null hypothesis of independence
(on significance level 0.05). We can (pending further notice!) accept that the
residuals are independent. (But keep at the back of your mind the possibility
of insufficient power of the test).

plot (1m.out) — diagnostic plots
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Plotting is necessary!

Anscombe’s 4 Regression data sets

12
1

10
|

¥4
8
|

X3 x4

www.matstat.org

All four datasets yield the
same regression line!

outlier and influential
observations



[dentifying Influential Observations

Identification of outliers:

o library(car) ; outlierTest (x)
o library(mvoutlier) ; pcout (x)

Identification of "overly" influential observations:

influence.measures (1lm.out)

# dfb.1 dfb.bld. dffit cov.r cook.d hat inf
# 1 -0.242084 0.413389 0.54996 0.949 1.40e-01 0.1000
# 2 0.001439 0.000483 0.00492 1.153 1.27e-05 0.0439
# 3 -0.004942 0.002987 -0.00642 1.167 2.16e-05 0.0555
# 4 0.108248 -0.146100 -0.161l66 1.433 1.37e-02 0.2373
# 5 0.015030 -0.010388 0.01755 1.181 1.62e-04 0.0669
# 6 0.443579 -0.354659 0.46590 1.027 1.04e-01 0.1034
# 7 0.004796 -0.001941 0.00805 1.156 3.40e-05 0.0462

removing observation 4 would significantly change the fitted regression
model = check this observation!
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Non-linear terms of the independent variable

yi:oz-l—ﬂivg-l—@i with & ~ N(0,0)

see Reg_Models_Examples.R
x1l = seqg(0, 5, len = 11)

vyl = x17°2 + rnorm(length(xl), mean = 0, sd = 1) # x? + noise
plot(x1l, yl, col = "blue", pch = 19, xlab = "", ylab = "")
2 - . Can we fit such a curve using

a linear model ?
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Non-linear terms of the independent variable

yi:a—l—ﬁx?—l—gi with 8¢NN(070)

o This is still a linear model w.r.t. the coefficients @ and !
o We can cheat a little bit: replace the x? by new variable

If we substitute x’ = x2

yi =+ Br; + &

, we get back to the usual form:

data = data.frame(xsq = x172, vy = yl) # new xsqg
head (data)

it xXsq y
# 1 0.00 1.2329697
# 2 0.25 -0.5919289
# 3 1.00 2.6289114
# 4 2.25 1.7347630
# 5 4.00 3.6582234
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Non-linear terms of the independent variable

Im2 = Im(y ~ xsqgq, data=data) #v=a+ b*)x"2 + e
coef (1m2) # 0.4511422 0.9832360
a = coef(lm2)[1] # intercept

b = coef (1m2) [2] # slope

xt = seqg(0, 5, len=401)

vt = a + b*xt"2 # regression line
lines (xt, yt, col = "red", lty = 2, 1lwd = 1) # not too bad
. works with all kinds of

functions f(x;)
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Non-linear terms of the independent variable

yi:oz-l—/fxzz-l-&' with  &; ~ N(0,0)

In R, it is also possible to include non-linear terms directly:

data3 = data.frame(x = x1, y = yl) # the original data
plot(y ~ x, data = data3)

Im3 = Im(y ~ I(x"2), data = data3) # W-R-notation

The symbol I(.) is important! (Wilkinson-Rogers notation)

More functions in R:
y ~ poly(x, ...) # Polynom fitting
Im(log(y) ~ Xx) # Regression on transformed data

res = model (y ~ X)
library (MASS)

boxcox (res) # Find the power of y that improves the fit

www.matstat.org



