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1. The Simple Linear Regression Model
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o May not be useful in many cases 
o ... but can be used to explain how regression works 
o see Reg_Models_Examples.R 

data(thuesen, package = "ISwR") 

thuesen = thuesen[complete.cases(thuesen),]

head(thuesen)

# blood.glucose short.velocity

# 1 15.3 1.76

# 2 10.8 1.34

# 3 8.1 1.27

# 4 19.5 1.47

# 5 7.2 1.27

# 6 5.3 1.49

# 7 9.3 1.31

# 8 11.1 1.09

plot(short.velocity ~ blood.glucose, data=thuesen, 

main="Measurements", col="red", font.main=1) 



The Simple Linear Regression Model
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o Not thrillingly linear 
o ... but let's give it a try

plot(short.velocity ~ blood.glucose, data=thuesen, main = 

"Measurements", col = "red", font.main = 1) 



The Simple Linear Regression Model
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o Aim: find functional relationship between blood glucose and velocity
o try with linear relationship: 

signal   +    noise (= 𝜀𝑖)
deterministic   +    probabilistic

o 𝑥 : independent variable, predictor, regressor, explanatory variable, 
covariate, ...

o 𝑦: dependent variable, response, …

We assume that the noise is normally distributed (Central Limit 
Theorem) with zero mean:

with

When the assumption is valid, each response variable 𝑌𝑖 is also normally 
distributed, with mean 𝛼 + 𝛽 ∙ 𝑥𝑖 and standard deviation 𝜎 (However, 
𝛼, 𝛽 and 𝜎 still unknown → estimation)



Picture Source: Wackerly et al., 
ISBN 0-534-37741-6

The Simple Linear Regression Model

www.matstat.org

Assumptions:

o 𝜀𝑖 normally distributed
o 𝜀𝑖 independent
o equal variance assumption (homoscedasticity: same 𝜎 for all 𝜀𝑖 ) 
o 𝑥𝑖 known - not random !

𝑓(𝑦)



Estimation of α, β, and σ
Least Squares Method

Minimize the sum of the squared 
errors (between estimated curve 
and measured data points)!

𝑦𝑖

𝑥𝑖

𝜀2𝜀1

𝜀4
𝜀3

𝜀6𝜀5

𝑥2𝑥1 𝑥4
𝑥3 𝑥6

𝛼 + 𝛽 ∙ 𝑥3

measurements

regression line

Minimum

That’s essentially the idea of least squares !
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Least Squares Method*
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Find those 𝛼 and 𝛽 that make 𝑆𝑆𝑟𝑒𝑠 as small as possible (partial derivations 
must be zero):

Two algebraic equations for two unknowns 𝛼 and 𝛽. We find for 𝛼 and 𝛽
(see Appendix):

These quantities can be completely calculated from the sample (from
the 𝑦𝑖 and 𝑥𝑖). Note: 𝛼∗ and 𝛽∗ are random variables (depend on
sample: new sample → new 𝜀𝑖 → 𝑦𝑖 → 𝑆𝑥𝑦 → 𝛼∗→ …



An estimator for the standard deviation 
of the noise (σ)

We found the parameters 𝛼 and 𝛽 that minimize the residual Sum of Squares:

The minimum value is then: (insert the calculated values of 𝛼
and 𝛽 into the expression for 𝑆𝑆𝑟𝑒𝑠):

This minimum can be used to estimate 
the variance of the error terms 𝜀𝑖 →

Minimum

using (see Appendix):



An estimator for the standard deviation 
of the noise (σ)
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Absence of bias can be confirmed by just calculating the expectation 
value of the above expression for 𝑆2 (calculation not shown here):

This formula means that 𝑆2 is an unbiased estimator for 𝜎2 : 

o if many samples were taken, 
o ... and many 𝑆2 were calculated, 
o ... their mean would come close to the true 𝜎2

o … without systematic error 
o the more samples are taken, the closer comes 𝑆2 to 𝜎2

unbiased estimator for 𝜎2

unbiased estimator for 𝜎



Calculation of the regression line

Now, an estimation of the response is avaiable for arbitrary predictors 𝑥0:

𝑦𝑖

𝑥𝑖𝑥0

𝜇0
∗

regression line (-------------):

• estimation for slope: 𝛽∗

• estimation for intercept: 𝛼∗

𝛼∗

o 𝑥0 can be located between measured values 𝑥𝑖 (→ prediction)
o 𝛼∗ and 𝛽∗ are  random variables → 𝜇0

∗ is a random variable 
(changes with each new sample).
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Calculating the regression line

Uwe Menzel, 2014

see Reg_Models_Examples.R 

x = thuesen$blood.glucose

y = thuesen$short.velocity

Sxx = sum((x - mean(x))^2) # 429.7043

Sxy = sum((x - mean(x))*(y - mean(y))) # 9.437391

Syy = sum((y - mean(y))^2) # 1.193365 

# estimated slope of regression line:

beta.star = Sxy/Sxx # 0.02196252 

# estimated intercept of regression line:

alpha.star = mean(y) - beta.star*mean(x) # 1.097815 

plot(short.velocity ~ blood.glucose, data = thuesen, main = 

"Measurements and Regression Line", col="red", font.main=1)

abline(a=alpha.star, b=beta.star, col="darkgreen", lty=2, lwd=2)



How reliable is the regression line?
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see Reg_Models_Examples.R 

Questions:

o How sure can we be about the 
obtained result ?

o If we took a new sample from the 
same population: how much 
would the new regression line 
deviate from this one ?

o when taking a new sample: could 
it also be possible to get a 
regression line with slope zero, 
indicating that 𝑥 and 𝑦 are not 
related ?

o Is the result "significant"?



o Red points: high variance in the 
data, slope depends very much 
on particular values, changing 
few values could change the 
slope essentially

o Green points: low variance, slope 
seems to be fairly justified

o For situations not so extreme:
o A test is needed to show if a data 

set yields a “justified” slope (a
slope which is significantly 
different from zero)

How reliable is the regression line?
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o Exclude the possibility that the result is spurious, just emerging from the 
current sample

o Important: if the slope is "significantly" different from 0, we have some 
support that 𝑦 really depends on 𝑥



Sampling Distribution 
(of the estimated parameters) 
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o Slope and intercept estimated from a sample deviate from the true but 
unknown values (limited sample size, random noise).

o new sample → new 𝑦𝑖's → new values for slope and intercept
o If we measure many sets of 𝑦𝑖 and calculate slope and intercept for each of 

this sets, we observe a distribution of estimated slopes and intercepts.
o This is called sampling distribution.

betai <- numeric(1000)

for (i in 1:1000) {

xi = seq(1,10,len=10) # not random

yi = 1 + rnorm(10, mean=0, sd=1) # y not depending on x !

Sxx = sum((xi - mean(xi))^2) 

Sxy = sum((xi - mean(xi))*(yi - mean(yi)))

betai[i] = Sxy/Sxx # estimated slope for sample i 

}

hist(betai, breaks=25, main="Distribution of 1000 estimators 

of the slope", font.main=1, col="red", xlab="estimated 

slope")



Sampling Distribution for the estimated slope

Uwe Menzel, 2014

o Example: 30 samples yield a slope 
between 0.16 and 0.18

o ... but the true slope is zero (y does 
not depend on x)

o The estimated slopes inferred from 
some samples could make us believe 
the slope has some non-zero value, 
leading us to the false conclusion 
that y actually depends on x. 

o Conclusion: we have to test if our 
estimations are significant



Probability distributions of the estimates

What probability distributions do 𝛼∗, 𝛽∗ and 𝜇0
∗ have?

With some calculus ☺ (see Appendix), we get:

o 𝛼∗ and 𝛽∗ are linear 
combinations of the 𝑦𝑖

o because the 𝑦𝑖 are normally 
distributed, the 𝛼∗ and 𝛽∗ are 
as well

with

with

www.matstat.org



Probability distributions of the estimates

The estimates 𝛼∗, 𝛽∗ , 𝜇0
∗ are normally distributed. Expectation values, variances 

and standard deviations can be calculated:

Expectation and variance for 𝛼∗ follow from the corresponding expressions for 𝜇0
∗

by setting 𝑥0 = 0. Note that the variance of 𝜇0
∗ is big when 𝑥0 is far from ҧ𝑥.

Uwe Menzel, 2014

unbiased estimator (see Appendix for derivation)

consistent,  because

using



Probability distributions of the 
estimates

distribution for the slope 
estimation ( if  𝜀𝑖 ~ 𝑁 ) 

distribution for the intercept 
estimation ( if  𝜀𝑖 ~ 𝑁 ) 

distribution for the points on 
the regression line ( if  𝜀𝑖 ~ 𝑁 )
( 𝑥0 = 0 → distribution for  𝛼) 

All estimators are unbiased and consistent.

www.matstat.org



Finding a Pivot variable for testing if 𝛽 = 0
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To establish a test, we need a pivot variable: 

1. includes the parameter of interest (parameter the hypothesis is about, e.g. 𝛽)
2. all other quantities must be known (calculated from the sample)
3. the probability distribution of the pivot variable must be known

Minimum residual deviance 
(see below)

pivot variable, 𝑡-distributed with 𝑛 − 2
degrees of freedom

standard error for estimator of the slope



Finding the Pivot variable (*)

now, insert the 𝑁(0, 1)-distributed 
variable (above) →

standard normal, but not a 
pivot (because 𝜎 is unknown)

sum of squares of  independent 
𝑁(0,1)-variables is 𝜒2-distributed

generally valid for all 𝑛

distribution for the slope 
estimation ( if  𝜀𝑖 ~ 𝑁 ) 

sum of squares for residuals

Uwe Menzel, 2014



Finding the pivot variable (*)
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the unknown 𝜎 can be cancelled !

estimation for 𝜎

Pivot!:  everything known from sample 
except for 𝛽 (which we want to test)



Probability density function
𝜈 = degrees of freedom

𝑁(0,1)

𝑡(1)

𝑡(2)

𝑡(5)

𝑓𝑋 𝑥

Pivot variable if true σ is unknown*
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o Replacing the true (but unknown) 𝜎 by it's estimate S
o probability distribution shifts therefore from 𝑁 to the somewhat broader 𝒕-

distribution. This reflects the increase of uncertainty.

(narrow)

(broad)



Testing the hypothesis β = 0
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𝜶

𝑡(𝑛 − 2)𝑓𝑋 𝑥

𝑡𝛼(𝑛 − 2)

𝐻0 not rejected if 
t is here

𝐻0 rejected if 
t is here

We do not reject 𝐻0 if the value of
the t-statistic calculated from the
sample lies well within the
distribution expected under 𝐻0.
The plot corresponds to a one-sided
test. For a two-sided test, an area of
Τ𝛼

2 must be tagged in both tails.

𝐻0: 𝛽 = 0 t-statistic (just a number)

𝛼 : significance level 
(area exxegerated in the plot)



Calculating the p-value belonging to the slope
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hypothesis 𝛽 = 0

n = length(x)

df = n-2 # 23 degrees of freedom

SSres0 = Syy - Sxy^2/Sxx # 0.9860963 residual deviance

s = sqrt(SSres0/df) # 0.2166956 estimated sigma

se.beta = s/sqrt(Sxx) # 0.01045358 standard error

t = beta.star / se.beta # 2.100957 t-statistic 

p.value = 2*pt(t, df=df, lower.tail=FALSE) # 0.0468 two-sided test

For SSres0, see page 9 



Simple Regression using "lm"
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see Reg_Models_Examples.R 

lm.out = lm(short.velocity ~ blood.glucose, data = thuesen)

lm.out

# Call:

# lm(formula = short.velocity ~ blood.glucose, data = thuesen)

# 

# Coefficients:

# (Intercept) blood.glucose 

# 1.09781 0.02196 

These are the same results for slope and intercept as obtained above (page 12) 



summary(lm.out)

# Call:

# lm(formula = short.velocity ~ blood.glucose, data = thuesen)

# 

# Residuals:

#      Min       1Q   Median      3Q     Max 

# -0.40141 -0.14760 -0.02202 0.03001 0.43490 

# 

# Coefficients:

#   Estimate Std. Error t value Pr(>|t|) 

# (Intercept)   1.09781    0.11748   9.345 6.26e-09 ***

# blood.glucose 0.02196    0.01045   2.101 0.0479 * 

# ---

# Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1 

# 

# Residual standard error: 0.2167 on 21 degrees of freedom

# Multiple R-squared: 0.1737, Adjusted R-squared: 0.1343 

# F-statistic: 4.414 on 1 and 21 DF, p-value: 0.0479 

More lm-output by using summary
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Suggestion: let's try to understand the output of summary(lm.out):



Residuals

www.matstat.org

# Residuals:

# Min 1Q Median 3Q Max 

# -0.40141 -0.14760 -0.02202 0.03001 0.43490 

residuals = resid(lm.out) # another extractor function

summary(residuals) # the usual summary command

#     Min.   1st Qu.  Median    Mean 3rd Qu. Max. 

# -0.40140 -0.14760 -0.02202 0.00000 0.03001 0.43490  

#  mean=0 as expected (normal eqns.)

Possibility to (roughly) check the assumptions: 

o median close to zero
o skewness (N is symmetrical)

Difference between measured and fitted points



Estimated coefficients, their standard errors, 
t-statistic and p-values
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# Coefficients:

#               Estimate  Std. Error  t value Pr(>|t|) 

# (Intercept)   1.09781   0.11748     9.345   6.26e-09 ***

# blood.glucose 0.02196   0.01045 2.101 0.0479 *

SSreg0 = Syy - Sxy^2/Sxx

s = sqrt(SSreg0/(length(x)-2))

se.beta = s/sqrt(Sxx) # 0.01045358

t = beta.star / se.beta # 2.100957

p.value = 2*pt(t, df=length(x)-2, lower.tail=FALSE) # 0.04789591

(page 15, for 𝛽 = 0)



Significance codes
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# Coefficients:

#               Estimate Std. Error t value  Pr(>|t|) 

# (Intercept)    1.09781    0.11748   9.345  6.26e-09 ***

# blood.glucose  0.02196    0.01045   2.101  0.0479  *

# ---

# Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error

# Residual standard error: 0.2167 on 21 degrees of freedom

# Multiple R-squared: 0.1737, Adjusted R-squared: 0.1343 

# F-statistic: 4.414 on 1 and 21 DF, p-value: 0.0479

s = sqrt(SSreg0/(n-2)) # 0.2166956 estimation for sigma



Coefficient of Determination
("How good is the fit?")
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# Residual standard error: 0.2167 on 21 degrees of freedom

# Multiple R-squared: 0.1737, Adjusted R-squared: 0.1343

# F-statistic: 4.414 on 1 and 21 DF, p-value: 0.0479

The 𝑦-values vary for two reasons: 

1. because they change with 𝑥 and 
2. because of the noise 𝜀𝑖

Want to find out:

o How much of the total variance of 𝑦 can be explained by the linkage to 𝑥 (i.e. 
by the signal) and

o ... how much must be considered as random noise (left unexplained)?
o The lower the random noise compared to the signal, the better the fit.



Coefficient of Determination
- Subdividing the variation -
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Subdivide the total variation 𝑆𝑆𝑡𝑜𝑡 into two parts:

Sums of squares:

𝑆𝑆𝑡𝑜𝑡: total Sum of Squares,  regression + random noise 
𝑆𝑆𝑟𝑒𝑔: Sum of Squares for regression, describing the change by linkage to 𝑥

𝑆𝑆𝑟𝑒𝑠: Sum of Squares for residuals, describing random noise

ത𝑦 : grand mean ;    𝑦𝑖: measured points ;    𝑦𝑖
∗: estimated points

𝑦𝑖

𝑦𝑖
∗



Coefficient of Determination
- Definition -
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# Residual standard error: 0.2167 on 21 degrees of freedom

# Multiple R-squared: 0.1737, Adjusted R-squared: 0.1343

# F-statistic: 4.414 on 1 and 21 DF, p-value: 0.0479

Definition

o 𝑅2 is between 0 and 1
o 𝑅2 = 1 is perfect!

SS.tot = sum((y - mean(y))^2) # 1.1933

SS.reg = sum((y.hat - mean(y))^2) # 0.2072 deviance by regression

SS.res = sum(resid(lm.out)^2) # 0.9861 deviance by noise εi
SS.tot / ( SS.reg + SS.res) # 1 ok

R.squared = SS.reg/SS.tot # 0.17368 as in summary above

R.squared = 1 - SS.res/SS.tot # 0.17368 same

R.squared = Sxy^2/(Sxx*Syy) # 0.17368 same



How well did the fit work?  

R close to zero R close to one

Coefficient of determination

𝑅2 = 𝑟𝑥𝑦
2 (for simple linear regression) 𝑟𝑥𝑦 =

𝑐𝑥𝑦

𝑠𝑥 ∙ 𝑠𝑦

correlation coefficient
𝑐𝑥𝑦 = covariance

0 ≤ 𝑅2 ≤ 1poor fit good fit

www.matstat.org



R2 and the Pearson correlation 
coefficient*
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r = Sxy/sqrt(Sxx*Syy) # 0.4167

cor(blood.glucose, short.velocity, method="pearson") # 0.4167

r^2 # 0.1736844 = R2

R.squared # 0.1736844 same! see Reg_Models_Examples.R

Coefficient of determination and Pearson correlation coefficient are the same.
This is valid for simple linear regression, i.e. if we have one independent
variable only (see below for regression with multiple independent variables).

Pearson correlation

Coefficient of determination



Adjusted Coefficient of Determination*
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# Residual standard error: 0.2167 on 21 degrees of freedom

# Multiple R-squared: 0.1737, Adjusted R-squared: 0.1343

# F-statistic: 4.414 on 1 and 21 DF, p-value: 0.0479

𝑝 is the number of independent 
variables used in the model

n = length(x) # 25

p = 1 # number of independent variables 

R2.adjusted = 1-(1-R.squared)*(n-1)/(n-p-1) # 0.134336 ok 

o Adjusted R-squared: compares explanatory power of regression models 
with different numbers of predictors (𝑥1, 𝑥2, 𝑥3, …)

o In general: using more predictors, a better fit can always be achieved. 

o The usual R² always increases when new predictors are added. 
o The adjusted R² increases only if the new term improves the model 

significantly.



The F-Test for Analyzing the Variance*
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# Residual standard error: 0.2167 on 21 degrees of freedom

# Multiple R-squared: 0.1737, Adjusted R-squared: 0.1343 

# F-statistic: 4.414 on 1 and 21 DF, p-value: 0.0479

Test:   𝐻0: 𝛽 = 0

o If the null hypothesis is rejected: the predictor “explains” the response
o If not: no evidence for a linkage between 𝑥 and 𝑦

o This relationship is generally valid.
o 𝐹(𝑚, 𝑛) : F-distribution
o 𝑚: numerator degrees of freedom
o 𝑛: denominator degrees of freedom



The F-Test for Analyzing the Variance*
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because and →

because

remember: Τ𝜎 𝑆𝑥𝑥 is the standard deviation of 𝛽∗

and 𝛽 is the mean of 𝛽∗ (page 19)

We assume 𝐻0: 𝛽 = 0 , so that 𝐸 𝛽∗ = 0.  It follows that  Τ𝑆𝑆𝑟𝑒𝑔 𝜎2 is a square of a 

normally distributed variable, i.e. it is 𝜒2 - distributed with one degree of freedom.

Here, we estimated 2 parameters: 𝛼, 𝛽. A general expression for 𝑝 parameters is



The F-Test for Analyzing the Variance*
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Remember that 𝜀𝑖 ~ 𝑁 0, 𝜎 , so that each term of the sum is a 
square of a normally distributed variable. It follows that

because we estimated 2 parameters: 𝛼, 𝛽, and therefore loose two 
degrees of freedom. A general expression for 𝑝 parameters is



The F-Test for Analyzing the Variance*
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see 

o This relationship is generally valid.
o 𝐹(𝑚, 𝑛) : F-distribution

We have seen that

and

𝜒2 𝑝 − 1
𝑝 − 1

𝜒2 𝑛 − 𝑝
𝑛 − 𝑝

If we want evidence for a functional relationship between 𝑥 and 𝑦, we have to 
reject the 𝐻𝑜.

Therefore, we have 

… if 𝐻0 is true, i.e. 𝛽 = 0

(unknown 𝜎 cancels)



𝑓𝑋 𝑥

𝑋 ~ 𝐹 1, 21

𝑎𝑟𝑒𝑎 = 0.0479

𝐹 = 4.414

The F-Test for Analyzing the Variance*
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# Residual standard error: 0.2167 on 21 degrees of freedom

# Multiple R-squared: 0.1737, Adjusted R-squared: 0.1343 

# F-statistic: 4.414 on 1 and 21 DF, p-value: 0.0479

𝑝 : number of parameters,
here: 𝑝 = 2 (𝛼, 𝛽) 

o 𝐻0: 𝛽 = 0
o 𝐹 gets big if the regression variation 

is big compared to the residual 
variation

o If 𝐹 gets big, we reject the null 
hypothesis, i.e. we consider 𝛽 as 
significantly diffwrent from zero.

𝐹 = 4.414 is the observation



The F-Test for Analyzing the Variance*
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# Residual standard error: 0.2167 on 21 degrees of freedom

# Multiple R-squared: 0.1737, Adjusted R-squared: 0.1343 

# F-statistic: 4.414 on 1 and 21 DF, p-value: 0.0479

𝑝 : number of parameters,
here: 𝑝 = 2 (𝛼, 𝛽) 

num.params = 2 # number of regression parameters

n # 23 , number of data points

df.reg = num.params - 1 # 1  df for regression variation

df.res = n - num.params # 21 df for residual variation

F = (SS.reg/df.reg)/(SS.res/df.res) # 4.414018

p.value = pf(F, df.reg, df.res, lower.tail = FALSE) # 0.04789591

Simple linear regression (𝑝 = 2): same p-value for F-test as for t-test: 

# Coefficients:

#               Estimate Std. Error t value  Pr(>|t|) 

# (Intercept)    1.09781    0.11748   9.345  6.26e-09 ***

# blood.glucose  0.02196    0.01045   2.101  0.0479 *



The F-Test for Analyzing the Variance*
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Why is the p-value the same as for t-test? 

F = (SS.reg/df.reg)/(SS.res/df.res) # 4.414018

t = beta.star / se.beta # 2.100957 

t^2 # 4.414018 same as F 

F-distribution, general

for numerator 𝑑𝑓 = 1

𝜒2 1 is a square of a standard-
normal variable
𝑛 = 1 (simple linear regression)

If we take the square-root of this, we get:

is generally valid for all 𝑚remember that

t-distributed 𝐹 = 𝑡2 for simple linear regression



The F-Test is what ANOVA does
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o In general, ANOVA compares two variances
o With regard to regression, ANOVA performs the same analysis as above 
o ANOVA “knows” what to do with an lm object

anova(lm.out) # apply ANOVA to lm object 

# Analysis of Variance Table

# Response: short.velocity

# Df  Sum Sq   Mean Sq  F value  Pr(>F) 

# blood.glucose  1 0.20727  0.207269  4.414 0.0479 *

# Residuals     21 0.98610  0.046957 

o These are the same numbers as obtained above. 
o Later we will see that ANOVA can also be used to compare the 

performance of two regression models (by comparing the residual 
variances of both models).



Checking the Assumptions of the 
Model
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Assumptions:    

o Residuals 𝜀𝑖 normally distributed
o Equal variance assumption (homoscedasticity): same 𝜎 for all 𝜀𝑖

o Residulas 𝜀𝑖 independent



Normality of the Residuals

www.matstat.org

Create Quantile-quantile (QQ-) plot with the residuals:

A QQ-plot compares empirical
quantiles (obtained from the data)
with the quantiles deriving from some
theoretical distribution. The function
qqnorm compares empirical

quantiles with the quantiles of the
normal distribution. The data do not
conflict with the assumed distribution
if the data points roughly follow the
line created by qqline. Deviations

occur often at both ends, indicating
deviations in the tails of the
distribution.

qqnorm(resid(lm.out), col = "blue", cex = 1.3) # QQ-plot

qqline(resid(lm.out), col = "red", lty = 2)



Normality of the Residuals
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R provides also a number of functions to test for normality. The null
hypothesis of the tests is that the data are normally distributed. If the null
cannot be rejected, we have no evidence that the data deviate from a
normal distribution, i.e. we may accept that the data is normally
distributed. Note that failure of 𝐻0-rejection does not proof that the data is
normally distributed. There might simply be to few data to give the test
enough power. Some functions are:
o Shapiro-Wilks test
o Kolmogorov-Smirnov test
o Anderson-Darling test

res = residuals(lm.out)

shapiro.test(res) # p-value = 0.08173

# ks.test needs notional mean and sd, use estimate 

SSres0 = Syy - Sxy^2/Sxx ; s = sqrt(SSres0/(n-2))

ks.test(res, "pnorm", mean = 0, sd = s)  # p-value = 0.2134

library(nortest) # for ad.test

ad.test(res) # p-value = 0.02418



Equal variance assumption
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Plot residuals vs. fitted values:

o plot should not show any 
structure (shape of a cone etc ...)

o plot(lm.out)showsmore 

diagnostic plots

fitted = fitted(lm.out)

resid = residuals(lm.out)

plot(fitted, resid, col = "blue", cex = 1.5, cex.lab = 1.3)



Independence of the Residuals
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Plot auto-correlation of the residuals:

auto.cor = acf(resid(lm.out))

plot(auto.cor, main = "")

Autocorrelation is the correlation of a
signal with a delayed copy of itself as
a function of the delay (Wikipedia). A
high value of autocorrelation for
some lag indicates that there is some
repeated pattern in the data. Because
the residuals are assumed to be
independent we do not expect such a
pattern, but expect that the
autocorrelation low, i.e. within the
confidence limits (---------) for all
lags, except for lag 0.



Independence of the Residuals
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Independence can also be tested in R:

o Box-Pierce or Ljung-Box test 
o 𝐻0 :  independence

res = residuals(lm.out)

Box.test(res, lag = 1, type = "Box-Pierce")  # p-value = 0.8718

Box.test(res, lag = 2, type = "Box-Pierce")  # p-value = 0.8314 

Box.test(res, lag = 1, type = "Ljung-Box")   # p-value = 0.8634

All p-values are ≥ 0.05. We can not reject the null hypothesis of independence
(on significance level 0.05). We can (pending further notice!) accept that the
residuals are independent. (But keep at the back of your mind the possibility
of insufficient power of the test).

plot(lm.out) →  diagnostic plots



Plotting is necessary!
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All four datasets yield the 
same regression line!

outlier and influential 
observations



Identifying Influential Observations
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Identification of outliers:

o library(car) ; outlierTest(x) 

o library(mvoutlier) ; pcout(x) 

Identification of "overly" influential observations:

influence.measures(lm.out) 

# dfb.1_    dfb.bld.   dffit  cov.r   cook.d  hat inf 

# 1 -0.242084   0.413389  0.54996  0.949 1.40e-01   0.1000 

# 2  0.001439   0.000483  0.00492  1.153 1.27e-05   0.0439 

# 3 -0.004942   0.002987 -0.00642  1.167 2.16e-05   0.0555 

# 4  0.108248  -0.146100 -0.16166  1.433 1.37e-02   0.2373 * 

# 5  0.015030  -0.010388  0.01755  1.181 1.62e-04   0.0669 

# 6  0.443579  -0.354659  0.46590  1.027 1.04e-01   0.1034 

# 7  0.004796  -0.001941  0.00805  1.156 3.40e-05   0.0462 

removing observation 4 would significantly change the fitted regression 
model → check this observation! 



Non-linear terms of the independent variable
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with

see Reg_Models_Examples.R
x1 = seq(0, 5, len = 11)

y1 = x1^2 + rnorm(length(x1), mean = 0, sd = 1) # x² + noise 

plot(x1, y1, col = "blue", pch = 19, xlab = "", ylab = "")

Can we fit such a curve using 
a linear model ?



Non-linear terms of the independent variable
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with

o This is still a linear model w.r.t. the coefficients 𝛼 and 𝛽 !
o We can cheat a little bit: replace the 𝑥𝑖

2 by new variable

data = data.frame(xsq = x1^2, y = y1) # new xsq

head(data)

#    xsq          y

# 1 0.00  1.2329697

# 2 0.25 -0.5919289

# 3 1.00  2.6289114

# 4 2.25  1.7347630

# 5 4.00  3.6582234

If we substitute 𝑥′ = 𝑥2, we get back to the usual form:



Non-linear terms of the independent variable
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lm2 = lm(y ~ xsq, data=data) # y = a + b*x^2 + e

coef(lm2) # 0.4511422 0.9832360

a = coef(lm2)[1] # intercept

b = coef(lm2)[2] # slope

xt = seq(0, 5, len=401)

yt = a + b*xt^2 # regression line

lines(xt, yt, col = "red", lty = 2, lwd = 1) # not too bad

works with all kinds of 
functions 𝑓 𝑥𝑖



Non-linear terms of the independent variable
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with

In R, it is also possible to include non-linear terms directly:

data3 = data.frame(x = x1, y = y1) # the original data

plot(y ~ x, data = data3) 

lm3 = lm(y ~ I(x^2), data = data3) # W-R-notation

The symbol 𝐼(. ) is important!  (Wilkinson-Rogers notation)

y ~ poly(x, ...) # Polynom fitting

lm(log(y) ~ x) # Regression on transformed data

res = model(y ~ x) 

library(MASS) 

boxcox(res) # Find the power of 𝑦 that improves the fit

More functions in R:


