Regression Models in Systems Biology with R

Part I: Simple Linear Regression

Uwe Menzel 2014

www.matstat.org

Outline

1. Simple Linear Regression

- 1. The statistics behind the output of "lm"
- 2. General Linear Model
 - 1. Continuous and categorical variables mixed, "lm"
 - 2. Interaction
- 3. Generalized Linear Model
 - 1. Logistic Regression "glm"
 - 2. Multinomial Regression "multinom"

1. The Simple Linear Regression Model

- \circ May not be useful in many cases
- \circ ... but can be used to explain how regression works
- o see Reg_Models_Examples.R

plot(short.velocity ~ blood.glucose, data=thuesen, main="Measurements", col="red", font.main=1)

www.matstat.org

The Simple Linear Regression Model

plot(short.velocity ~ blood.glucose, data=thuesen, main =
"Measurements", col = "red", font.main = 1)

www.matstat.org

The Simple Linear Regression Model

Aim: find functional relationship between blood glucose and velocity
try with linear relationship:

$$y_i = \alpha + \beta x_i + \varepsilon_i \quad \text{with} \quad \varepsilon_i \sim N(0, \sigma)$$

signal + noise (= ε_i) deterministic + probabilistic

- *x* : independent variable, predictor, regressor, explanatory variable, covariate, ...
- *y*: dependent variable, response, ...

We assume that the **noise is normally distributed** (Central Limit Theorem) with zero mean:

$$\varepsilon_i \sim N(0,\sigma) \implies Y_i \sim N(\alpha + \beta x_i, \sigma)$$

When the assumption is valid, each response variable Y_i is also normally distributed, with mean $\alpha + \beta \cdot x_i$ and standard deviation σ (However, α, β and σ still unknown \rightarrow estimation)

The Simple Linear Regression Model

Assumptions:

- $\circ \ \epsilon_i$ normally distributed
- $\circ \epsilon_i$ independent
- equal variance assumption (homoscedasticity: same σ for all ε_i)
- x_i known not random !

$$\varepsilon_i \sim N(0,\sigma) \Longrightarrow$$

 $Y_i \sim N(\alpha + \beta x_i, \sigma)$

Picture Source: Wackerly et al., ISBN 0-534-37741-6

www.matstat.org

$\begin{array}{c} \text{Estimation of } \alpha, \, \beta, \, \text{and } \sigma \\ \text{Least Squares Method} \end{array}$

measurements
 regression line

Minimize the sum of the squared errors (between estimated curve and measured data points)!

 $y_{i} = \alpha + \beta x_{i} + \varepsilon_{i}$ $y_{i}^{*} = \alpha^{*} + \beta^{*} x_{i}$ $\varepsilon_{i} \sim N(0, \sigma)$ $\varepsilon_{i} = y_{i} - y_{i}^{*}$

 $SS_{res} = \sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} \left(y_i - \left(\alpha^* + \beta^* x_i \right) \right)^2 \quad \Longrightarrow \quad \text{Minimum}$

That's essentially the idea of least squares !

Uwe Menzel, 2014

Least Squares Method*

Find those α and β that make SS_{res} as small as possible (partial derivations must be zero):

$$\frac{\partial SS_{res}}{\partial \alpha^*} = -2\sum_{i=1}^n (y_i - \alpha^* - \beta^* x_i) = 0$$
$$\frac{\partial SS_{res}}{\partial \beta^*} = -2\sum_{i=1}^n x_i (y_i - \alpha^* - \beta^* x_i) = 0$$

Two algebraic equations for two unknowns α and β . We find for α and β (see Appendix):

$$\beta^* = \frac{S_{xy}}{S_{xx}} \quad \text{and} \quad \alpha^* = \bar{y} - \beta^* \bar{x}$$
$$S_{xy} = \sum_{i=1}^n (x_i - \bar{x}) (y_i - \bar{y}) \qquad S_{xx} = \sum_{i=1}^n (x_i - \bar{x})^2$$

These quantities can be completely calculated from the sample (from the y_i and x_i). Note: α^* and β^* are **random variables** (depend on sample: new sample \rightarrow new $\varepsilon_i \rightarrow y_i \rightarrow S_{xy} \rightarrow \alpha^* \rightarrow ...$

Uwe Menzel, 2014

An estimator for the standard deviation of the noise (σ)

We found the parameters α and β that minimize the residual Sum of Squares:

$$SS_{res} = \sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} \left(y_i - (\alpha^* + \beta^* x_i) \right)^2 \Longrightarrow$$
 Minimum

The minimum value is then: (insert the calculated values of α and β into the expression for SS_{res}):

$$SS_{res}^{0} = SS_{res}(\alpha^{*}, \beta^{*}) = \sum_{i=1}^{n} (y_{i} - \alpha^{*} - \beta^{*}x_{i})^{2}$$

$$= \sum_{i=1}^{n} [y_{i} - \bar{y} + \beta^{*} \cdot \bar{x} - \beta^{*}x_{i}]^{2}$$

$$= \alpha^{*} + \beta^{*} \cdot \bar{x}$$

$$= \sum_{i=1}^{n} [(y_{i} - \bar{y}) - \beta^{*}(x_{i} - \bar{x})]^{2}$$

$$= \dots$$
This minimum can be used to estimate

 $= S_{yy} - S_{xy}^2 / S_{xx}$ the variance of the error terms $\varepsilon_i \rightarrow$

An estimator for the standard deviation of the noise (σ)

 $S^2 = SS^0_{res}/(n-2)$ unbiased estimator for σ^2 $S = \sqrt{SS^0_{res}/(n-2)}$ unbiased estimator for σ

Absence of bias can be confirmed by just calculating the expectation value of the above expression for S^2 (calculation not shown here):

$$E\left(S^2\right) = \sigma^2$$

This formula means that S^2 is an **unbiased estimator** for σ^2 :

- if many samples were taken,
- \circ ... and many S^2 were calculated,
- \circ ... their mean would come close to the true σ^2
- \circ ... without systematic error
- \circ the more samples are taken, the closer comes S^2 to σ^2

Calculation of the regression line

Now, an estimation of the response is avaiable for **arbitrary** predictors x_0 :

- x_0 can be located between measured values x_i (→ prediction)
- \circ α^{*} and β^{*} are random variables → μ_0^* is a random variable (changes with each new sample).

www.matstat.org

Calculating the regression line

see Reg_Models_Examples.R


```
x = thuesen$blood.glucose
y = thuesen$short.velocity
                                         # 429.7043
Sxx = sum((x - mean(x))^2)
Sxy = sum((x - mean(x))*(y - mean(y))) # 9.437391
Syy = sum((y - mean(y))^2)
                                         # 1.193365
# estimated slope of regression line:
beta.star = Sxy/Sxx
                                         # 0.02196252
# estimated intercept of regression line:
alpha.star = mean(y) - beta.star*mean(x) # 1.097815
plot(short.velocity ~ blood.glucose, data = thuesen, main =
"Measurements and Regression Line", col="red", font.main=1)
abline (a=alpha.star, b=beta.star, col="darkgreen", lty=2, lwd=2)
```

How reliable is the regression line?

see Reg_Models_Examples.R

Measurements

Questions:

- How sure can we be about the obtained result ?
- If we took a new sample from the same population: how much would the new regression line deviate from this one ?
- when taking a new sample: could it also be possible to get a regression line with slope zero, indicating that x and y are not related ?
- Is the result "significant"?

How reliable is the regression line?

- Exclude the possibility that the result is spurious, just emerging from the current sample
- **Important**: if the slope is "significantly" different from 0, we have some support that *y* really depends on *x*

- Red points: high variance in the data, slope depends very much on particular values, changing few values could change the slope essentially
- Green points: low variance, slope seems to be fairly justified
- \circ For situations not so extreme:
- A test is needed to show if a data set yields a "justified" slope (a slope which is significantly different from zero)

Sampling Distribution (of the estimated parameters)

- Slope and intercept estimated from a sample deviate from the true but unknown values (limited sample size, random noise).
- new sample → new y_i 's → new values for slope and intercept
- If we measure many sets of y_i and calculate slope and intercept for each of this sets, we observe a **distribution** of estimated slopes and intercepts.
- This is called sampling distribution.

```
betai <- numeric(1000)
for (i in 1:1000) {
    xi = seq(1,10,len=10)  # not random
    yi = 1 + rnorm(10, mean=0, sd=1)  # y not depending on x !
    Sxx = sum((xi - mean(xi))^2)
    Sxy = sum((xi - mean(xi))*(yi - mean(yi)))
    betai[i] = Sxy/Sxx  # estimated slope for sample i
}
biot(batai, breake=25, main="Distribution of 1000 estimators."</pre>
```

```
hist(betai, breaks=25, main="Distribution of 1000 estimators
of the slope", font.main=1, col="red", xlab="estimated
slope")
```

Sampling Distribution for the estimated slope

70 60 50 Frequency 4 30 20 10 -0.1 0.2 -0.3 -0.2 0.0 0.1 0.3 estimated slope

Distribution of 1000 estimators of the slope

- **Example**: 30 samples yield a slope between 0.16 and 0.18
- ... but the true slope is zero (y does not depend on x)
- The estimated slopes inferred from some samples could make us believe the slope has some non-zero value, leading us to the false conclusion that y actually depends on x.
- **Conclusion**: we have to test if our estimations are significant

Probability distributions of the estimates

What probability distributions do α^* , β^* and μ_0^* have?

$$\beta^* = \frac{S_{xy}}{S_{xx}} \quad \text{and} \quad \alpha^* = \bar{y} - \beta^* \bar{x}$$
$$S_{xy} = \sum_{i=1}^n (x_i - \bar{x}) (y_i - \bar{y}) \quad S_{xx} = \sum_{i=1}^n (x_i - \bar{x})^2$$

With some calculus ③ (see Appendix), we get:

$$\beta^* = \sum_{i=1}^n c_i \cdot y_i \quad \text{with} \quad c_i = \frac{x_i - \bar{x}}{S_{xx}}$$
$$\alpha^* = \sum_{i=1}^n d_i \cdot y_i \quad \text{with} \quad d_i = \frac{1}{n} - c_i \bar{x}$$

- $\circ \alpha^*$ and β^* are linear combinations of the y_i
- because the y_i are normally distributed, the α^* and β^* are as well

www.matstat.org

Probability distributions of the estimates

The estimates α^* , β^* , μ_0^* are normally distributed. Expectation values, variances and standard deviations can be calculated:

 $E(\beta^*) = \ldots = \beta$ unbiased estimator (see Appendix for derivation) $V(\beta^*) = \ldots = \frac{\sigma^2}{S_{mn}}$ consistent, because $S_{xx} = \sum_{i=1}^n (x_i - \bar{x})^2 \to \infty$ for $n \to \infty$ $E(\mu_{0}^{*}) = E(\alpha^{*} + \beta^{*} \cdot x_{0}) = E\left[\sum_{i=1}^{n} (d_{i} + c_{i} \cdot x_{0}) \cdot Y_{i}\right] = \dots = \alpha + \beta \cdot x_{0} = \mu_{0}$ $V(\mu_0^*) = V(\alpha^* + \beta^* \cdot x_0) = V \left| \sum_{i=1}^n \left(\frac{1}{n} + c_i \cdot (x_0 - \bar{x}) \right) \cdot Y_i \right| = \dots$ $\ldots = \sigma^2 \cdot \left(\frac{1}{n} + \frac{\left(x_0 - \bar{x}\right)^2}{S_{rr}}\right) \qquad \text{using} \quad d_i = \frac{1}{n} - c_i \cdot \bar{x}$

Expectation and variance for α^* follow from the corresponding expressions for μ_0^* by setting $x_0 = 0$. Note that the variance of μ_0^* is big when x_0 is far from \bar{x} .

Uwe Menzel, 2014

Probability distributions of the estimates

$$\beta^* \sim N\left(\beta, \frac{\sigma}{\sqrt{S_{xx}}}\right)$$

$$\alpha^* \sim N\left(\alpha, \ \sigma\sqrt{\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}}}\right)$$

distribution for the slope estimation (if $\varepsilon_i \sim N$)

distribution for the intercept estimation (if $\varepsilon_i \sim N$)

$$\mu_0^* \sim N\left(\mu_0, \ \sigma \sqrt{\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}}\right)$$

distribution for the points on the regression line (if $\varepsilon_i \sim N$) ($x_0 = 0 \rightarrow$ distribution for α)

$$\mu_0 = \alpha + \beta \cdot x_0$$

All estimators are **unbiased** and **consistent**.

www.matstat.org

Finding a Pivot variable for testing if $\beta = 0$

To establish a test, we need a **pivot variable**:

- 1. includes the parameter of interest (parameter the hypothesis is about, e.g. β)
- 2. all other quantities must be known (calculated from the sample)
- 3. the probability distribution of the pivot variable must be known

$$\frac{\beta^* - \beta}{se\left(\beta^*\right)} \sim t(n-2)$$

 $se(\beta^*) = S/\sqrt{S_{xx}}$

pivot variable, *t*-distributed with (n - 2) degrees of freedom

standard error for estimator of the slope

$$S = \sqrt{SS_{res}^0/(n-2)}$$

 $SS_{res}^0 = S_{yy} - S_{xy}^2 / S_{xx}$

Minimum residual deviance (see below)

Finding the Pivot variable (*)

$$\beta^* \sim N(\beta, \frac{\sigma}{\sqrt{S_{xx}}})$$

$$Z = \frac{\beta^* - \beta}{\sigma/\sqrt{S_{xx}}} \sim N(0, 1)$$

$$SS_{res}^0 = \sum_{i=1}^n \varepsilon_i^2$$

$$\frac{SS_{res}^0}{\sigma^2} = \sum_{i=1}^n \left(\frac{\varepsilon_i}{\sigma}\right)^2 \sim \chi^2$$

$$\frac{Z}{\sqrt{\frac{\chi^2(n)}{n}}} \sim t(n) \quad \text{generally}$$

$$\sum \frac{Z}{\sqrt{\frac{SS_{res}^0}{\sigma^2(n-2)}}} \sim t(n-2) \quad \text{for all } \chi$$

distribution for the slope estimation (if $\varepsilon_i \sim N$)

standard normal, but not a pivot (because σ is unknown)

sum of squares for residuals

sum of squares of independent N(0,1)-variables is χ^2 -distributed

generally valid for all
$$n \implies \frac{Z}{\sqrt{\frac{\chi^2(n-2)}{n-2}}} \sim t(n-2)$$

now, insert the N(0, 1)-distributed variable (above) \rightarrow

Uwe Menzel, 2014

Finding the pivot variable (*)

$$Z = \frac{\beta^* - \beta}{\sigma / \sqrt{S_{xx}}} \sim N(0, 1)$$

$$\frac{\frac{\beta^* - \beta}{\sigma / \sqrt{S_{xx}}}}{\sqrt{\frac{SS_{res}^0}{\sigma^2 (n-2)}}} \sim t(n-2)$$

the unknown σ can be cancelled !

$$\frac{\beta^* - \beta}{\sqrt{\frac{SS_{res}^0}{S_{xx}(n-2)}}} \sim t(n-2)$$

$$S = \sqrt{SS_{res}^0/(n-2)}$$
 estimation for σ

$$\left(\frac{\beta^* - \beta}{S/\sqrt{S_{xx}}} \sim t(n-2)\right)$$

Pivot!: everything known from sample except for β (which we want to test)

Pivot variable if true σ is unknown*

- Replacing the true (but unknown) σ by it's estimate S
- probability distribution shifts therefore from N to the somewhat broader *t*distribution. This reflects the increase of uncertainty.

Testing the hypothesis $\beta = 0$

$$H_0: \beta = 0$$

$$\frac{\beta^* - 0}{S/\sqrt{S_{xx}}} \sim t(n-2)$$

α : significance level(area exxegerated in the plot)

We do not reject H_0 if the value of the t-statistic calculated from the sample lies well within the distribution expected under H_0 . The plot corresponds to a one-sided test. For a two-sided test, an area of $\alpha/2$ must be tagged in both tails.

Uwe Menzel, 2014

Calculating the p-value belonging to the slope

$$\frac{\beta^* - 0}{S/\sqrt{S_{xx}}} \sim t(n-2) \qquad \text{hypothesis } \beta = 0$$

For SSres0, see page 9

Simple Regression using "lm"

see Reg_Models_Examples.R

```
lm.out = lm(short.velocity ~ blood.glucose, data = thuesen)
lm.out
```

```
# Call:
# lm(formula = short.velocity ~ blood.glucose, data = thuesen)
#
# Coefficients:
# (Intercept) blood.glucose
# 1.09781 0.02196
```

These are the same results for slope and intercept as obtained above (page 12)

More lm-output by using summary

```
summary(lm.out)
# Call:
 lm(formula = short.velocity ~ blood.glucose, data = thuesen)
#
#
 Residuals:
#
      Min 10 Median 30
                                        Max
 -0.40141 - 0.14760 - 0.02202 0.03001 0.43490
#
#
#
 Coefficients:
#
              Estimate Std. Error t value Pr(>|t|)
 (Intercept) 1.09781 0.11748 9.345 6.26e-09 ***
#
# blood.glucose 0.02196 0.01045 2.101 0.0479 *
# ---
 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
#
#
# Residual standard error: 0.2167 on 21 degrees of freedom
# Multiple R-squared: 0.1737, Adjusted R-squared: 0.1343
# F-statistic: 4.414 on 1 and 21 DF, p-value: 0.0479
```

Suggestion: let's try to understand the output of **summary (lm.out**):

www.matstat.org

Residuals

Residuals: # Min 1Q Median 3Q Max # -0.40141 -0.14760 -0.02202 0.03001 0.43490

 $\varepsilon_i = y_i^* - y_i$ Difference between measured and fitted points

residuals = resid(lm.out) # another extractor function
summary(residuals) # the usual summary command

Min. 1st Qu. Median Mean 3rd Qu. Max. # -0.40140 -0.14760 -0.02202 0.00000 0.03001 0.43490 # mean=0 as expected (normal eqns.)

Possibility to (roughly) check the assumptions:

- median close to zero $\varepsilon_i \sim N(0, \sigma)$
- skewness (N is symmetrical)

Estimated coefficients, their standard errors, t-statistic and p-values

#	Coefficients:				
#		Estimate	Std. Error	t value	Pr(> t)
#	(Intercept)	1.09781	0.11748	9.345	6.26e-09 ***
#	blood.glucose	0.02196	0.01045	2.101	0.0479 *

$$se\left(\beta^{*}\right) = \frac{S}{\sqrt{S_{xx}}} \qquad S = \sqrt{\frac{SS_{res}^{0}}{n-2}} \qquad SS_{res}^{0} = S_{yy} - S_{xy}^{2}/S_{xx}$$

SSreg0 = Syy - Sxy²/Sxx
s = sqrt(SSreg0/(length(x)-2))
se.beta = s/sqrt(Sxx) # 0.01045358

$$t = rac{eta^*}{se\left(eta^*
ight)}$$
 (page 15, for $eta = 0$)

t = beta.star / se.beta # 2.100957
p.value = 2*pt(t, df=length(x)-2, lower.tail=FALSE) # 0.04789591

Significance codes

Residual standard error

Residual standard error: 0.2167 on 21 degrees of freedom # Multiple R-squared: 0.1737, Adjusted R-squared: 0.1343 # F-statistic: 4.414 on 1 and 21 DF, p-value: 0.0479

$$S = \sqrt{\frac{SS_{res}^{0}}{n-2}}$$
 $SS_{res}^{0} = S_{yy} - S_{xy}^{2} / S_{xx}$

s = sqrt(SSreg0/(n-2)) # 0.2166956 estimation for sigma

Coefficient of Determination ("How good is the fit?")

Residual standard error: 0.2167 on 21 degrees of freedom # Multiple R-squared: 0.1737, Adjusted R-squared: 0.1343 # F-statistic: 4.414 on 1 and 21 DF, p-value: 0.0479

The *y*-values vary for two reasons:

- 1. because they change with *x* and
- 2. because of the noise ε_i

Want to find out:

- How much of the total variance of *y* can be explained by the linkage to *x* (i.e. by the signal) and
- ... how much must be considered as random noise (left unexplained)?
- $\circ~$ The lower the random noise compared to the signal, the better the fit.

Coefficient of Determination - Subdividing the variation -

Subdivide the total variation SS_{tot} into two parts:

 \overline{y} : grand mean; y_i : measured points; y_i^* : estimated points

 SS_{tot} : total Sum of Squares, regression + random noise SS_{reg} : Sum of Squares for regression, describing the change by linkage to x SS_{res} : Sum of Squares for residuals, describing random noise

Coefficient of Determination - Definition -

Residual standard error: 0.2167 on 21 degrees of freedom # Multiple R-squared: 0.1737, Adjusted R-squared: 0.1343 # F-statistic: 4.414 on 1 and 21 DF, p-value: 0.0479

$$R^{2} = \frac{SS_{reg}}{SS_{tot}} = 1 - \frac{SS_{res}}{SS_{tot}} = \frac{S_{xy}^{2}}{S_{xx} \cdot S_{yy}} \quad \text{Definition}$$

- \circ R^2 is between 0 and 1
- $R^2 = 1$ is perfect!

```
SS.tot = sum((y - mean(y))^2) # 1.1933
SS.reg = sum((y.hat - mean(y))^2) # 0.2072 \text{ deviance by regression}
SS.res = sum(resid(lm.out)^2) # 0.9861 \text{ deviance by noise } \varepsilon_i
SS.tot / (SS.reg + SS.res) # 1 \text{ ok}
R.squared = SS.reg/SS.tot # 0.17368 \text{ as in summary above}
R.squared = 1 - SS.res/SS.tot # 0.17368 \text{ same}
R.squared = Sxy^2/(Sxx*Syy) # 0.17368 \text{ same}
```

How well did the fit work?

$$R^{2} = \frac{S_{xy}^{2}}{S_{xx} \cdot S_{yy}} = 1 - \frac{\sum (y_{i} - y_{i}^{*})^{2}}{\sum (y_{i} - \bar{y})^{2}} \quad \text{Coefficient of determination}$$

poor fit
$$\longrightarrow 0 \le R^2 \le 1 \leftarrow$$
 good fit

 $R^2 = r_{xy}^2$ (for simple linear regression) $r_{xy} = \frac{c_{xy}}{s_x \cdot s_y}$ correlation coefficient $c_{xy} = \text{covariance}$

R² and the Pearson correlation coefficient*

Coefficient of determination and Pearson correlation coefficient are the same. This is valid for simple linear regression, i.e. if we have one independent variable only (see below for regression with multiple independent variables).

```
r = Sxy/sqrt(Sxx*Syy) # 0.4167
cor(blood.glucose, short.velocity, method="pearson") # 0.4167
r^2 # 0.1736844 = R<sup>2</sup>
R.squared # 0.1736844 same! see Reg_Models_Examples.R
```

Adjusted Coefficient of Determination*

Residual standard error: 0.2167 on 21 degrees of freedom
Multiple R-squared: 0.1737, Adjusted R-squared: 0.1343
F-statistic: 4.414 on 1 and 21 DF, p-value: 0.0479

 $R_{adj}^2 = 1 - (1 - R^2) \frac{n - 1}{n - p - 1}$ *p* is the number of independent variables used in the model

- **Adjusted R-squared:** compares explanatory power of regression models with different numbers of predictors $(x_1, x_2, x_3, ...)$
- In general: using more predictors, a better fit can always be achieved.
- \circ The usual R² **always** increases when new predictors are added.
- The adjusted R² increases only if the new term improves the model significantly.

Residual standard error: 0.2167 on 21 degrees of freedom # Multiple R-squared: 0.1737, Adjusted R-squared: 0.1343 # F-statistic: 4.414 on 1 and 21 DF, p-value: 0.0479

Test: $H_0: \beta = 0$

- If the null hypothesis is rejected: the predictor "explains" the response
- If not: no evidence for a linkage between *x* and *y*

$$\frac{\frac{\chi^2(n)}{n}}{\frac{\chi^2(m)}{m}} \sim F(m,n)$$

- This relationship is generally valid.
- \circ F(m, n) : **F**-distribution
- *m*: numerator degrees of freedom
- *n*: denominator degrees of freedom

$$\frac{1}{\sigma^2} SS_{reg} = \frac{1}{\sigma^2} \sum_{i} (y_i^* - \bar{y})^2 = \frac{{\beta^*}^2}{\sigma^2} \sum_{i} (x_i - \bar{x})^2$$

because $y_i^* = \alpha^* + \beta^* \cdot x_i$ and $\bar{y} = \alpha^* + \beta^* \cdot \bar{x} \rightarrow y_i^* - \bar{y} = \beta^* \cdot (x_i - \bar{x})$

$$\frac{1}{\sigma^2} SS_{reg} = \frac{{\beta^*}^2}{\sigma^2} S_{xx} \qquad \text{because} \quad S_{xx} = \sum_{i=1}^n \left(x_i - \bar{x} \right)^2$$

$$\frac{1}{\sigma^2} SS_{reg} = \left(\frac{\beta^*}{\sigma/\sqrt{S_{xx}}}\right)^2 \qquad \text{remember: } \frac{\sigma}{\sqrt{S_{xx}}} \text{ is the standard deviation of } \beta^* \\ \text{and } \beta \text{ is the mean of } \beta^* \text{ (page 19)} \end{cases}$$

We assume H_0 : $\beta = 0$, so that $E(\beta^*) = 0$. It follows that SS_{reg}/σ^2 is a square of a normally distributed variable, i.e. it is χ^2 - distributed with one degree of freedom.

$$\frac{1}{\sigma^2} SS_{reg} \sim \chi^2(1)$$

Here, we estimated 2 parameters: α , β . A general expression for p parameters is

$$\frac{1}{\sigma^2}SS_{reg} \sim \chi^2(p-1)$$

Uwe Menzel, 2014

$$\frac{1}{\sigma^2}SS_{res} = \frac{1}{\sigma^2}\sum_i (y_i - y_i^*)^2 = \frac{1}{\sigma^2}\sum_i \varepsilon_i^2 = \sum_i \left(\frac{\varepsilon_i}{\sigma}\right)^2$$

Remember that $\varepsilon_i \sim N(0, \sigma)$, so that each term of the sum is a square of a normally distributed variable. It follows that

$$\frac{1}{\sigma^2}SS_{res} \sim \chi^2(n-2)$$

because we estimated 2 parameters: α , β , and therefore loose two degrees of freedom. A general expression for p parameters is

$$\frac{1}{\sigma^2}SS_{res} \sim \chi^2(n-p)$$

$$\frac{\frac{\chi^2(n)}{n}}{\frac{\chi^2(m)}{m}} \sim F(m,n)$$

This relationship is generally valid. *F*(*m*, *n*) : F-distribution

We have seen that

$$\frac{1}{\sigma^2} SS_{reg} \sim \chi^2(p-1)$$
$$\frac{1}{\sigma^2} SS_{res} \sim \chi^2(n-p)$$

Therefore, we have

and

$$\frac{\frac{1}{\sigma^2} \frac{SS_{reg}}{p-1}}{\frac{1}{\sigma^2} \frac{SS_{reg}}{n-p}} \sim F\left(p-1, n-p\right) \qquad \text{(unknown } \sigma \text{ cancels)} \qquad \frac{\frac{\chi^2(p-1)}{(p-1)}}{\frac{\chi^2(n-p)}{(n-p)}}$$

$$F = \frac{\frac{SS_{reg}}{p-1}}{\frac{SS_{res}}{n-p}} \sim F(p-1, n-p) \qquad \dots \text{ if } H_0 \text{ is true, i.e. } \beta = 0$$

If we want evidence for a functional relationship between x and y, we have to reject the H_o .

Uwe Menzel, 2014

Residual standard error: 0.2167 on 21 degrees of freedom
Multiple R-squared: 0.1737, Adjusted R-squared: 0.1343
F-statistic: 4.414 on 1 and 21 DF, p-value: 0.0479

$$F = \frac{\frac{SS_{reg}}{p-1}}{\frac{SS_{res}}{n-p}} \sim F\left(p-1, n-p\right)$$

p : number of parameters, here: $p = 2 (\alpha, \beta)$

 $\circ \quad H_0: \beta = 0$

- *F* gets big if the regression variation is big compared to the residual variation
- \circ If *F* gets big, we reject the null hypothesis, i.e. we consider *β* as significantly diffwrent from zero.

F = 4.414 is the observation

Residual standard error: 0.2167 on 21 degrees of freedom # Multiple R-squared: 0.1737, Adjusted R-squared: 0.1343 # F-statistic: 4.414 on 1 and 21 DF, p-value: 0.0479

$$F = \frac{\frac{SS_{reg}}{p-1}}{\frac{SS_{res}}{n-p}} \sim F(p-1, n-p) \qquad \begin{array}{l} p: \text{number of parameters,} \\ \text{here: } p = 2 \ (\alpha, \beta) \end{array}$$

Simple linear regression (p = 2): same p-value for F-test as for t-test:

#	Coefficients:				
#		Estimate	Std. Error	t value	Pr(> t)
#	(Intercept)	1.09781	0.11748	9.345	6.26e-09 ***
#	blood.glucose	0.02196	0.01045	2.101	0.0479 *

Uwe Menzel, 2014

Why is the p-value the same as for t-test?

$$\frac{\frac{\chi^2(n)}{n}}{\frac{\chi^2(m)}{m}} \sim F(m,n) \qquad \text{F-distribution, general}$$

$$\frac{\chi^2(1)}{\frac{\chi^2(m)}{m}} \sim F(1,n) \qquad \text{for numerator } df = 1 \qquad \begin{array}{l} \chi^2(1) \text{ is a square of a standard-normal variable} \\ n = 1 \text{ (simple linear regression)} \end{array}$$

If we take the square-root of this, we get:

 $\frac{Z}{\sqrt{\frac{\chi^2(m)}{m}}} \sim t(m) \qquad \text{t-distributed} \qquad F = t^2 \text{ for simple linear regression} \\ \hline \text{remember that } \frac{Z}{\sqrt{\frac{\chi^2(m)}{m}}} \sim t(m) \quad \text{is generally valid for all } m \end{array}$

Uwe Menzel, 2014

The F-Test is what ANOVA does

- $\circ~$ In general, ANOVA compares two variances
- With regard to regression, ANOVA performs the same analysis as above
- ANOVA "knows" what to do with an lm object

```
anova(lm.out) # apply ANOVA to lm object
# Analysis of Variance Table
# Response: short.velocity
# Df Sum Sq Mean Sq F value Pr(>F)
# blood.glucose 1 0.20727 0.207269 4.414 0.0479 *
# Residuals 21 0.98610 0.046957
```

- These are the **same** numbers as obtained above.
- Later we will see that ANOVA can also be used to compare the performance of two regression models (by comparing the residual variances of both models).

Checking the Assumptions of the Model

Assumptions:

- Residuals ε_i normally distributed
- Equal variance assumption (homoscedasticity): same σ for all ε_i
- Residulas ε_i independent

 $\varepsilon_{i} \sim N\left(0,\sigma\right)$

Normality of the Residuals

Create Quantile-quantile (QQ-) plot with the residuals:

```
qqnorm(resid(lm.out), col = "blue", cex = 1.3) # QQ-plot
qqline(resid(lm.out), col = "red", lty = 2)
```


Normal Q-Q Plot

QQ-plot compares empirical Α quantiles (obtained from the data) with the quantiles deriving from some theoretical distribution. The function compares empirical qqnorm quantiles with the quantiles of the normal distribution. The data do not conflict with the assumed distribution if the data points roughly follow the line created by qqline. Deviations occur often at both ends, indicating deviations in the tails of the distribution.

Normality of the Residuals

R provides also a number of functions to **test for normality**. The null hypothesis of the tests is that the data are normally distributed. If the null cannot be rejected, we have no evidence that the data deviate from a normal distribution, i.e. we may accept that the data is normally distributed. Note that failure of H_0 -rejection does **not proof** that the data is normally distributed. There might simply be to few data to give the test enough power. Some functions are:

- Shapiro-Wilks test
- Kolmogorov-Smirnov test
- Anderson-Darling test

```
res = residuals(lm.out)
shapiro.test(res) # p-value = 0.08173
# ks.test needs notional mean and sd, use estimate
SSres0 = Syy - Sxy^2/Sxx ; s = sqrt(SSres0/(n-2))
ks.test(res, "pnorm", mean = 0, sd = s) # p-value = 0.2134
library(nortest) # for ad.test
ad.test(res) # p-value = 0.02418
```

Equal variance assumption

Plot residuals vs. fitted values:

```
fitted = fitted(lm.out)
resid = residuals(lm.out)
plot(fitted, resid, col = "blue", cex = 1.5, cex.lab = 1.3)
```


- plot should not show any structure (shape of a cone etc ...)
- o plot(lm.out) shows more
 diagnostic plots

www.matstat.org

Independence of the Residuals

Plot auto-correlation of the residuals:

```
auto.cor = acf(resid(lm.out))
plot(auto.cor, main = "")
```


Autocorrelation is the correlation of a signal with a delayed copy of itself as a function of the delay (Wikipedia). A high value of autocorrelation for some lag indicates that there is some repeated pattern in the data. Because the residuals are assumed to be independent we do **not** expect such a pattern, but expect that the autocorrelation low, i.e. within the confidence limits (-----) for all lags, except for lag 0.

Independence of the Residuals

Independence can also be tested in R:

- Box-Pierce or Ljung-Box test
- \circ H_0 : independence

```
res = residuals(lm.out)
Box.test(res, lag = 1, type = "Box-Pierce")  # p-value = 0.8718
Box.test(res, lag = 2, type = "Box-Pierce")  # p-value = 0.8314
Box.test(res, lag = 1, type = "Ljung-Box")  # p-value = 0.8634
```

All p-values are ≥ 0.05 . We can **not** reject the null hypothesis of independence (on significance level 0.05). We can (pending further notice!) accept that the residuals are independent. (But keep at the back of your mind the possibility of insufficient power of the test).

plot(lm.out) \rightarrow diagnostic plots

Uwe Menzel, 2014

Plotting is necessary!

www.matstat.org

Identifying Influential Observations

Identification of outliers:

- o library(car) ; outlierTest(x)
- o library(mvoutlier) ; pcout(x)

Identification of "overly" influential observations:

influence.measures(lm.out)

#		dfb.1_	dfb.bld.	dffit	cov.r	cook.d	hat inf	
#	1	-0.242084	0.413389	0.54996	0.949	1.40e-01	0.1000	
#	2	0.001439	0.000483	0.00492	1.153	1.27e-05	0.0439	
#	3	-0.004942	0.002987	-0.00642	1.167	2.16e-05	0.0555	
#	4	0.108248	-0.146100	-0.16166	1.433	1.37e-02	0.2373	*
#	5	0.015030	-0.010388	0.01755	1.181	1.62e-04	0.0669	
#	6	0.443579	-0.354659	0.46590	1.027	1.04e-01	0.1034	
#	7	0.004796	-0.001941	0.00805	1.156	3.40e-05	0.0462	

removing observation 4 would significantly change the fitted regression model \rightarrow check this observation!

$$y_i = \alpha + \beta x_i^2 + \varepsilon_i \quad \text{with} \quad \varepsilon_i \sim N(0, \sigma)$$

 $see Reg_Models_Examples.R$ $y1 = x1^2 + rnorm(length(x1), mean = 0, sd = 1) # x^2 + noise$ plot(x1, y1, col = "blue", pch = 19, xlab = "", ylab = "")

Can we fit such a curve using a linear model ?

www.matstat.org

$$y_i = \alpha + \beta x_i^2 + \varepsilon_i \quad \text{with} \quad \varepsilon_i \sim N(0, \sigma)$$

This is still a linear model w.r.t. the coefficients *α* and *β* !
We can cheat a little bit: replace the x_i² by new variable

If we substitute $x' = x^2$, we get back to the usual form:

 $y_i = \alpha + \beta x_i' + \varepsilon_i$

data = data.frame(xsq = $x1^2$, y = y1) # new xsq head(data)

#		xsq	У
#	1	0.00	1.2329697
#	2	0.25	-0.5919289
#	3	1.00	2.6289114
#	4	2.25	1.7347630
#	5	4.00	3.6582234

```
lm2 = lm(y ~ xsq, data=data)  # y = a + b*x^2 + e
coef(lm2)  # 0.4511422 0.9832360
a = coef(lm2)[1]  # intercept
b = coef(lm2)[2]  # slope
xt = seq(0, 5, len=401)
yt = a + b*xt^2  # regression line
lines(xt, yt, col = "red", lty = 2, lwd = 1) # not too bad
```


works with all kinds of functions $f(x_i)$

$$y_i = \alpha + \beta x_i^2 + \varepsilon_i$$
 with $\varepsilon_i \sim N(0, \sigma)$

In R, it is also possible to include non-linear terms **directly**:

data3 = data.frame(x = x1, y = y1) # the original data plot(y ~ x, data = data3) $lm3 = lm(y ~ I(x^2), data = data3) # W-R-notation$

The symbol *I*(.) is important! (Wilkinson-Rogers notation)

More functions in R:

```
y ~ poly(x, ...) # Polynom fitting
lm(log(y) ~ x) # Regression on transformed data
res = model(y ~ x)
library(MASS)
boxcox(res) # Find the power of y that improves the fit
```