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How to Exploit Differential Expression?

['ve got a number of transcriptomes
under varied experimental conditions.

What comes next?
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Differences in Expression under varied Experimental

Conditions
B - 2 Dam e XEE 4 .6 A O0m @
| | Arial vl |- A 4 A dow @ EhE H-E % F
ACT1 v fm ¥ =
A | B | C | D | E F = | H | | | J | K
1 FC24 FC23 FC8 F3 F2 F5 ordering averageA averageB FC
2 | FGSG_02337 9 4 4 1286 8318 2614 2>1 5.67 4072.67 717.44
3 FGSG_10990 2 1 1 613 513 384 2>1 1.33 503.33 374.69
a4 | FGSG_02502 7 1 6 1793 805 463 2>1 4.67 1020.33 218.18
5 | FGSG_10991 1 1 2 408 207 278 2>1 1.33 297.67 221.59
6 | FGSG_08238 57 37 63 17205 3218 3388 2>1 52.33 7937.00 151.63
7 FGSG_10416 1 0 0 126 302 168 2>1 0.33 198.67 578.64
8 | FGSG_02386 3 4 5 273 220 292 2>1 4.00 261.67 65.25
9 FGSG_09830 264 119 243 9898 4270 2996 2>1 208.67 5721.33 27.42
10 | FGSG_02578 12 5 29 1305 1058 757 2>1 15.33 1040.00 67.78
FGSG_04596 1 1 0 806 340 208 2>1 0.67 451.33 667.00
:1! FGSG_09826 1 1 2 94 299 216 2>1 1.33 203.00 151.12

o Treatment: Expression profile of £ avenaceum when provoking infection
o Control: Expression profile of . avenaceum when on culture medium

For the majority of the genes, the differences in counts are not as obvious as in this

figure — statistical tools needed!



Tools to Indentify Differentially Expressed Genes
(DEG's)

o Many! (available in R)

o Question: Is there a significantly different expression of gene “ABC” between
the two (or more) conditions ... or is the calculated fold change just caused
by random noise?

o edgeR

o DESeq, DESeq2 '
o DEGseq R
o baySeq

o NOISeq

o ..

o Most of the tools rely on the Negative Binomial Distribution

www.matstat.org



Background: The Negative Binomial Distribution

o Sequence of independent Bernoulli trials, e.g. coin toss:
o P(succes) = P(head) = 0.6 @

o P(failure) = P(tail) = 0.4

r = 3 — stop at 3" failure

~ F g h
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o Stop when a specified (non-random) number “r” of failures (here: tails)
has occurred

o Now, count the number of successes (here: heads) in this sequence =
random variable

o the Negative Binomial distribution gives the probability distribution of
the number of successes (heads) in this sequence (termed k)

o k=0,1,2,...,00 (above:k =5)

Uwe Menzel, 2015



Probability
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Background: Negative Binomial Distribution

_ _ k+r—1 k r  Probability Mass
P (X B k) - ( k ) R (1 N p) Function (PMF)

] o X:number of successes (heads)
PMF for NegBin o p: probability of success
r=10 p=0.6 --> mean = 15 variance = 37.5 o r:number of failures (tails),
parameter, not random

It is obvious that all this
has nothing to do with
. count data!

- Or does it?
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Distribution of a particular transcript in a library
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After
amplification:

RNA “ABC”:
10 out of 10.000
~ 0.1%

\Illlllllllll

The probability to sequence (“fish”) k molecules of a particular species of RNA
(“ABC”) can be described by a Binomial distribution:

n

P(X =k)= <k> - (1=p)"™"  PMF

X - number of RNA molecules “ABC” sequenced - random variable!
n - total number of reads sequenced

p - probability to obtain this particular RNA (fraction, 1/1000)




Distribution of a particular transcript in a library

If p is small and n is big, the Binomial distribution can be approximated by a
Poisson distribution with the mean n - p:

k

Example: “light rain’

PX=k =" exp(—p) EX)=p=np

k!

o Accordingly, the number of
counts for a particular RNA

species “ABC” should be Poisson- —

distributed.
o The distribution parameter u
(mean) is deduced from the

concentration of species “ABC’,
and is therefore characteristic -
n

for technical replicates.

)

Problem: variance = mean
for Poisson distribution

Poisson PMF
mean = 10 ; variance = 10
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0.3

Distribution of counts for a transcript when biological
replicates are involved

Different biological replicates are characterized by different concentrations
of transcript “ABC”,

... and should therefore have different distribution parameters u (i.e.
different means and variances of the Poisson).

Consequently, a realistic distribution to describe biological replicates is a
mixture (weigthed average) of Poissons with different u’s:

0.4 4

0.3+

0.2+

0.1+

Calculate a weighted
average of (many) Poisson
distributions! —
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Mixture of Poissons

o Mixture (weighted mean) of Poisson distributions @ = T
o use the Gamma distribution as weights, .... B = 1—p
o ...and sum up over infinitely many Poissons — Integral p
+o0 / Kk ,""éa 1 ~~~~~~~~~ ﬁ \::/
P(X =k = — exp (—p) X/ Tt e PHd
( ) e u)/, T " i

e _
______________________

https://en.wikipedia.org/wiki

- X pr+k T (7" + k) /Negative_binomial_distributi

E+r—1 .
= ( L )-p"’-(l—m

A weighted mixture of Poisson distributions
with a Gamma mixing distribution has the
same probability mass function as the
Negative Binomial distribution.

on#Overdispersed_Poisson

(" accounts for overdispersion: A

variance = mean + o - mean2

“overdispersed Poisson model”
- J

Uwe Menzel, 2015



Overdispersion

log(variance) versus log(mean) for a sequencing project, each point represents a
transcript:

' Source: Ignacio Gonzalez
4- . “Statistical analysis of RNA-
Seq data”
Tutorial

Gene-level variance (logyg scale)

2

Mean gene expression level (log,, scale)
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Another parametrisation for NB

r and p can be replaced by yando - NB(k, u, o)

= p-r A solve for p and r —
1—0p 1
i P=pta s a=-
ot = ——=
(1-=p)° )
2
o2 — N
p= pr o p? 2 _ A\ F
o . P(k,u,0) = Kt o 1 (ﬁ)— -
. 2 o k o o2
_‘72_,“ y

PMF of the NB distribution as a function of y and o
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Tools: edgeR

Robinson, McCarthy, Smyth
R/Bioconductor package
replicated count data (in at least one experimental condition)
Negative Binomial distribution, overdispersed Poisson model
empirical Bayes method: estimate overdispersion across transcripts
o variance = mean + a - mean?
o “shrink dispersion towards a consensus value”
o “borrowing information between genes”

O O O O O

Robinson, McCarthy, Smyth

“edgeR: a Bioconductor package for differential expression
analysis of digital gene expression data”

Bioinformatics, 2010
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variance

Tools: DESeq

o Negative Binomial distribution (overdispersion)

o variance-mean relationship estimated from data (mean-dependent local
regression
o “..pool the data from genes with similar expression strength for the purpose
of variance estimation” (Anders & Huber, Genome Biol., 2010)”

| | | |
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(variance = mean)

: DESeq (piece-wise
dispersion estimate)
Dashed: comparison to edgeR
—  (single common dispersion
estimate for all genes)

L Anders S., Huber W.
“Differential expression analysis
- for sequence count data.”
Genome Biol. 2010
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Tools: baySeq

Hardcastle, Kelly
Negative Binomial Distribution (NB), accounting for overdispersion
Empirical Bayes:

o borrow information across the dataset

o estimate empirical prior distributions for NB-parameters
not restricted to pairwise comparisons, complex experimental
designs possible

Hardcastle, Kelly
“baySeq: Empirical Bayesian methods for identifying

differential expression in sequence count data”
BMC Bioinformatics, 2010

Uwe Menzel, 2015



Further steps

Profiles, Protein Motifs, and Domains (after multiple alignment)
Blast GO (http://amigol.geneontology.org/cgi-bin/amigo/blast.cgi )
blast2GO (commercial)

clustering of commonly regulated genes (based of sequence similarity)



Appendix

How to Exploit Differential Expression?
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Method

Single-molecule

real-time sequencing

(Pacific Biosciences)

lon semiconductor
(lon Torrent
sequencing)

Pyrosequencing (454)

Sequencing by
synthesis (lllumina)

Sequencing by
ligation (SOLID
sequencing)

Chain termination

(Sanger sequencing)

Read length

10,000 bp to 15,000
bp avg (14,000 bp
N50); maximum read

length >40,000
basesl611162](63]

up to 400 bp

700 bp

50 to 300 bp

50+35 or 50+50 bp

400 to 900 bp

Accuracy
(single read
not consensus)

87% single-read

accuracyl54

98%

99.9%

99.9% (Phred30)

99.9%

99.9%

Reads per run

50,000 per SMRT cell,
or 500-1000
megabases65166]

up to 80 million

1 million

up to 6 billion (TruSeq
paired-end)

1.2 to 1.4 billion

NfA

NGS

Time per run

30 minutes to 4
hours!7]

2 hours

24 hours

1to 11 days,
depending upon
sequencer and
specified read
lengthl62]

1 to 2 weeks

20 minutes to 3
hours

www.matstat.org

Cost per 1
million bases
(in US$)

$0.13-$0.60

$1

$10

$0.05 to $0.15

$0.13

$2400

Advantages

Longest read length. Fast.

Detects 4mcC, 5mC,
6mA.[68]

Less expensive
equipment. Fast.

Long read size. Fast.

Potential for high
sequence yield,
depending upon
sequencer model and
desired application.

Low cost per base.

Long individual reads.

Useful for many
applications.

Disadvantages

Moderate throughput. Equipment
can be very expensive.

Homopolymer errors.

Runs are expensive. Homopolymer
errors.

Equipment can be very expensive.
Requires high concentrations of
DNA.

Slower than other methods. Has
issues sequencing palindromic
sequences.[70]

More expensive and impractical for
larger sequencing projects. This
method also requires the time
consuming step of plasmid cloning
or PCR.



Negative Binomial Distribution

The Negative Binomial distribution arises as a continuous mixture of Poisson
distributions where the mixing distribution of the Poisson mean is a Gamma
distribution. That is, we can view the Negative Binomial as a Poisson(})
distribution, where A is itself a random variable, distributed as a Gamma
distribution with shape = r and scale 8 = p/(1 — p).

Because of this, the Negative Binomial distribution is also known as the
Gamma-mixture of Poisson distributions.

(Wikipedia: Negative Binomial distribution)

fx (x) = Lol e Probability Density Function (PDF)
a >0 shape x € (0,00)

B8 >0 rate
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Poisson Distribution

can be applied to systems with a large number of possible events, each of
which is rare

discrete probability distribution that expresses the probability of a given
number of events occurring in a fixed interval of time (or space) if these
events occur independently and with a known average rate

can also be used for the number of events in other specified intervals
such as distance, area or volume

Example: light rain

P(X=k = exp(—p) k=012 ..

O mean=yu _ _
_ cannot account for overdispersion !
O variance =

www.matstat.org



Overdispersed Poisson

biological replicates do not have the same distribution parameters
mixture of Poissons (if there is more than one biological replicate for a
certain experimental condition)

variance of the Poisson mixture can be greater than the mean —
distribution (of counts) is overdispersed with respect to a Poisson
distribution

mixture is realized by letting the parameter be distributed itself
Poisson-gamma mixture distribution: mean () varies according to a
Gamma distribution

Poisson distribution with a gamma-distributed mean parameter = Negative
Binomial distribution

www.matstat.org



Overdispersed Poisson

The Negative Binomial distribution can be used as an alternative to the
Poisson distribution

It is especially useful for discrete data over an unbounded positive
range whose sample variance exceeds the sample mean

In such cases, the observations are overdispersed with respect to a
Poisson distribution, for which the mean is equal to the variance,
making the Poisson an unappropiate model

Since the Negative Binomial distribution has one more parameter than
the Poisson, the second parameter can be used to adjust the variance
independently of the mean

www.matstat.org



The False Discovery Rate

e Define the False Discovery Proportion (FDP) to be the (unobserved)
proportion of false discoveries among total rejections.

As a function of threshold ¢ (and implicitly P and H""), write
this as

SUp<t}(1-H)
: __ #False Discoveries

_ i
FDP(t) a Z 1{P?, < t} + 1{3” P; > t} ; #Discoveries
i

e The False Discovery Rate (FDR) for a multiple testing threshold
T is defined as the expected FDP using that procedure:

FDR = E (FDP(T)) .
Benjamini & Hochberg (1995, 2000)

www.matstat.org



RNA-Seq

RNA-Seq is used to identify mRNA transcripts, including novel transcripts and transcripts
with alternative exons, and to measure the abundance of transcripts [16-18]. There are
a few critical differences between the DNA-Seq and RNA-Seq protocols, firstly that the
mRNA must be reverse transcribed (using an enzyme called “reverse transcriptase”) into
cDNA (complementary DNA), so that it can be sequenced. RNA-Seq protocols can be
either “unstranded”, in which case reads from both the template strand and coding strand
of the gene are generated, or “strand-specific” in which case reads align either to the
template strand or the coding strand, depending on protocol steps. Secondly, it is common
in RNA-Seq to enrich for RNA molecules which end with a long string of adenosines
(referred to as a “poly(A) tail”) before the reverse transcription. This effectively enriches

the resulting pool for mRNA molecules over the highly abundant rRNA (ribosomal RNA)

and tRNA (transfer RNA).
Michael I. Love

Thesis FU Berlin 201
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Empirical Bayes

o Empirical Bayes methods are procedures for statistical inference in which
the prior distribution is estimated from the data.

o “...shares information across all observations to improve inference.”
(edgeR publication)

o This approach stands in contrast to standard Bayesian methods, for which
the prior distribution is fixed before any data are observed.
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