
Statistical Computing
.

Hidden Markov Models for Bioinformatics
- Part IV -

Uwe Menzel, 2011

uwe.menzel@matstat.org

www.matstat.org

Contents Part IV

o What is a Markov chain and what has it to do with DNA?

o A Likelihood Ratio Test using Markov chains to determine whether a
small piece of DNA is a CpG island or not

o The Hidden Markov Model: transition and emission probabilities

o Decoding: the Viterbi algorithm

o Forward algorithm, backward algorithm and posterior probabilities

o Parameter estimation for Hidden Markov Models

o A Continuous Density Hidden Markov Model for the recognition of
large amplifications and deletions in genomic DNA

o Appendix

www.matstat.org

Forward algorithm

In part 3, we have used the Viterbi algorithm to identify the state path 𝜋∗ that
maximizes the probabilities 𝑃 𝑥, 𝜋 and 𝑃 𝜋 | 𝑥 . Another task is to calculate the
probability of the observation, 𝑃(𝑥). By taking advantage of the marginal rule,
𝑃 𝑥 can be calculated as the sum over all state paths leading to observation 𝑥:

𝑃 𝑥 = ෍

𝜋

𝑃 𝑥, 𝜋

Many state paths can lead to the same observation, as we have seen for the CpG
island example in part 3, giving rise to a high computational load when the
above formula is used.

The forward algorithm provides a scheme to calculate 𝑃(𝑥) in a recursive
manner, similar to the Viterbi algorithm. We define the forward variable
𝑓𝑘 𝑖 − 1 , the probability of the chain up to observation 𝑥𝑖−1, ending with state
𝜋𝑖−1 = 𝑘:

𝑓𝑘 𝑖 − 1 = 𝑃 𝑥1, 𝑥2, … , 𝑥𝑖−1, 𝜋𝑖−1 = 𝑘

www.matstat.org

Forward algorithm

www.matstat.org

𝑓𝑙 𝑖 = 𝑒𝑙 𝑥𝑖 ∙ ෍

𝑘

𝑓𝑘 𝑖 − 1 ∙ 𝑎𝑘𝑙

That ensures that we obtain a sum over all state paths leading to the
observation 𝑥1, 𝑥2, … , 𝑥𝑖 . We initialise with 𝑓0 0 = 1, and 𝑓𝑘 0 = 0 for 𝑘 ≠ 0:

𝑖 = 1 → 𝑓𝑙 1 = 𝑒𝑙 𝑥1 ∙ 𝑓0 0 ∙ 𝑎0𝑙 = 𝑒𝑙 𝑥1 ∙ 𝑎0𝑙

o the index 𝑙 runs through all states, for example 𝐴+, 𝐶+, 𝐺+, 𝑇+, 𝐴−, 𝐶−, 𝐺−, 𝑇−

o 𝑥1 is the first observation in the chain, for instance 𝐶 (CpG island example)

𝑖 = 2 → 𝑓𝑙 2 = 𝑒𝑙 𝑥2 ∙ ෍

𝑘

𝑓𝑘 1 ∙ 𝑎𝑘𝑙

o both indices 𝑘 and 𝑙 run through all states, e.g. 𝐴+, 𝐶+, 𝐺+, 𝑇+, 𝐴−, 𝐶−, 𝐺−, 𝑇−

o 𝑥2 is the second observation in the chain, for instance 𝐺 (CpG island example)

o we continue running through index 𝑖 ….

𝑖 = 1, 2, … , 𝐿

In order to obtain the forward variable at position 𝑖, we replace the 𝑚𝑎𝑥𝑘(…)-
operator in the Viterbi algorithm by the sum by σ𝑘(…).

Forward algorithm

www.matstat.org

o both indices 𝑘 and 𝑙 run through all states, e.g. 𝐴+, 𝐶+, 𝐺+, 𝑇+, 𝐴−, 𝐶−, 𝐺−, 𝑇−

o 𝑥𝐿 is the last observation in the chain, for instance 𝐺

𝑖 = 𝐿 → 𝑓𝑙 𝐿 = 𝑒𝑙 𝑥𝐿 ∙ ෍

𝑘

𝑓𝑘 𝐿 − 1 ∙ 𝑎𝑘𝑙

The last step is for 𝑖 = 𝐿:

Now, we have the variables 𝑓𝑙 𝐿 for all 𝑙, i.e. for all possible states the
chain can end in. If it is known that the chain ends after 𝐿 symbols, we
can then calculate the desired 𝑃 𝑥 as:

𝑃 𝑥 = ෍

𝑘

𝑓𝑘 𝐿 ∙ 𝑎𝑘𝐸

For chains of unknown length (embedded sequence) it might be
convenient to introduce an end state 𝐸, with transition probabilities 𝑎𝑘𝐸

(or 𝑎𝑘0) to that state. If an end state is included in the model, 𝑃 𝑥 is
calculated as:

𝑃 𝑥 = ෍

𝑘

𝑓𝑘 𝐿

𝑙 𝑓𝑙 1 𝑓𝑙 1

𝐴+ 𝑒𝐴+ 𝐶 ∙ 𝑎0𝐴+ 0

𝐶+ 𝑒𝐶+ 𝐶 ∙ 𝑎0𝐶+ 0.5

𝐺+ 𝑒𝐺+ 𝐶 ∙ 𝑎0𝐺+ 0

𝑇+ 𝑒𝑇+ 𝐶 ∙ 𝑎0𝑇+ 0

𝐴− 𝑒𝐴− 𝐶 ∙ 𝑎0𝐴− 0

𝐶− 𝑒𝐶− 𝐶 ∙ 𝑎0𝐶− 0.5

𝐺− 𝑒𝐺− 𝐶 ∙ 𝑎0𝐺− 0

𝑇− 𝑒𝑇− 𝐶 ∙ 𝑎0𝑇− 0

𝑖 = 1 → 𝑓𝑙 1 = 𝑒𝑙 𝑥1 ∙ 𝑎0𝑙

Recursion: 𝑓𝑙 𝑖 = 𝑒𝑙 𝑥𝑖 ∙ σ𝑘 𝑓𝑘 𝑖 − 1 ∙ 𝑎𝑘𝑙

𝑥1 = 𝐶 ; 𝑥2 = 𝐺 ; 𝑥3 = 𝐶 ; 𝑥4 = 𝐺

Observed sequence: C G C G

www.matstat.org

We had 𝑓0 0 = 1, and 𝑓𝑘 0 = 0 for 𝑘 ≠ 0

Forward algorithm

To ease calculations, we set
𝑎0𝐶+ = 𝑎0𝐶− = 0.5 here (we
know that the chain starts with
symbol 𝐶)

𝑙 𝑓𝑙 2 𝑓𝑙 2

𝐴+ 𝑒𝐴+ 𝐺 ∙ σ𝑘 … 0

𝐶+ 𝑒𝐶+ 𝐺 ∙ σ𝑘 … 0

𝐺+ 𝑒𝐺+ 𝐺 ∙ 𝑓𝐶+ 1 ∙ 𝑎𝐶+𝐺+ + 𝑓𝐶− 1 ∙ 𝑎𝐶−𝐺+ 0.5 ∙ 0.26 + 0.0025 = 0.13125

𝑇+ 𝑒𝑇+ 𝐺 ∙ σ𝑘 … 0

𝐴− 𝑒𝐴− 𝐺 ∙ σ𝑘 … 0

𝐶− 𝑒𝐶− 𝐺 ∙ σ𝑘 … 0

𝐺− 𝑒𝐺− 𝐺 ∙ 𝑓𝐶+ 1 ∙ 𝑎𝐶+𝐺− + 𝑓𝐶− 1 ∙ 𝑎𝐶−𝐺− 0.5 ∙ 0.0125 + 0.077 = 0.04475

𝑇− 𝑒𝑇− 𝐺 ∙ σ𝑘 … 0

𝑖 = 2 → 𝑓𝑙 2 = 𝑒𝑙 𝑥2 ∙ ෍

𝑘

𝑓𝑘 1 ∙ 𝑎𝑘𝑙

Recursion: 𝑓𝑙 𝑖 = 𝑒𝑙 𝑥𝑖 ∙ σ𝑘 𝑓𝑘 𝑖 − 1 ∙ 𝑎𝑘𝑙

𝑥1 = 𝐶 ; 𝑥2 = 𝐺 ; 𝑥3 = 𝐶 ; 𝑥4 = 𝐺

Observed sequence: C G C G

www.matstat.org

We have 𝑓𝐶+ 1 = 0.5, and 𝑓𝐶− 1 = 0.5, all other 𝑓𝑙 1 = 0

Forward algorithm

𝑙 𝑓𝑙 3 𝑓𝑙 3

𝐴+ 𝑒𝐴+ 𝐶 ∙ σ𝑘 … 0

𝐶+ 𝑒𝐶+ 𝐶 ∙ 𝑓𝐺+ 2 ∙ 𝑎𝐺+𝐶+ + 𝑓𝐺− 2 ∙ 𝑎𝐺−𝐶+ 0.13125 ∙ 0.322 + 0.04475 ∙ 0.0025 = 0.04237

𝐺+ 𝑒𝐺+ 𝐶 ∙ σ𝑘 … 0

𝑇+ 𝑒𝑇+ 𝐶 ∙ σ𝑘 … 0

𝐴− 𝑒𝐴− 𝐶 ∙ σ𝑘 … 0

𝐶− 𝑒𝐶− 𝐶 ∙ 𝑓𝐺+ 2 ∙ 𝑎𝐺+𝐶− + 𝑓𝐺− 2 ∙ 𝑎𝐺−𝐶− 0.13125 ∙ 0.0125 + 0.04475 ∙ 0.244 = 0.01256

𝐺− 𝑒𝐺− 𝐶 ∙ σ𝑘 … 0

𝑇− 𝑒𝑇− 𝐶 ∙ σ𝑘 … 0

𝑖 = 3 → 𝑓𝑙 3 = 𝑒𝑙 𝑥3 ∙ ෍

𝑘

𝑓𝑘 2 ∙ 𝑎𝑘𝑙

Recursion: 𝑓𝑙 𝑖 = 𝑒𝑙 𝑥𝑖 ∙ σ𝑘 𝑓𝑘 𝑖 − 1 ∙ 𝑎𝑘𝑙

𝑥1 = 𝐶 ; 𝑥2 = 𝐺 ; 𝑥3 = 𝐶 ; 𝑥4 = 𝐺

Observed sequence: C G C G

www.matstat.org

We had 𝑓𝐺+ 2 = 0.13125, and 𝑓𝐺− 2 = 0.04475, all other 𝑓𝑙 2 = 0

Forward algorithm

𝑙 𝑓𝑙 4 𝑓𝑙 4

𝐴+ 𝑒𝐴+ 𝐺 ∙ σ𝑘 … 0

𝐶+ 𝑒𝐶+ 𝐺 ∙ σ𝑘 … 0

𝐺+ 𝑒𝐺+ 𝐺 ∙ 𝑓𝐶+ 3 ∙ 𝑎𝐶+𝐺+ + 𝑓𝐶− 3 ∙ 𝑎𝐶−𝐺+ 0.04237 ∙ 0.26 + 0.01256 ∙ 0.0025 = 0.01104

𝑇+ 𝑒𝑇+ 𝐺 ∙ σ𝑘 … 0

𝐴− 𝑒𝐴− 𝐺 ∙ σ𝑘 … 0

𝐶− 𝑒𝐶− 𝐺 ∙ σ𝑘 … 0

𝐺− 𝑒𝐺− 𝐺 ∙ 𝑓𝐶+ 3 ∙ 𝑎𝐶+𝐺− + 𝑓𝐶− 3 ∙ 𝑎𝐶−𝐺− 0.04237 ∙ 0.0125 + 0.01256 ∙ 0.077 = 0.001497

𝑇− 𝑒𝑇− 𝐺 ∙ σ𝑘 … 0

𝑖 = 4 → 𝑓𝑙 4 = 𝑒𝑙 𝑥4 ∙ ෍

𝑘

𝑓𝑘 3 ∙ 𝑎𝑘𝑙

Recursion: 𝑓𝑙 𝑖 = 𝑒𝑙 𝑥𝑖 ∙ σ𝑘 𝑓𝑘 𝑖 − 1 ∙ 𝑎𝑘𝑙

𝑥1 = 𝐶 ; 𝑥2 = 𝐺 ; 𝑥3 = 𝐶 ; 𝑥4 = 𝐺

Observed sequence: C G C G

www.matstat.org

We had 𝑓𝐶+ 3 = 0.04237, and 𝑓𝐶− 3 = 0.01256, all other 𝑓𝑙 3 = 0

Forward algorithm

Recursion: 𝑓𝑙 𝑖 = 𝑒𝑙 𝑥𝑖 ∙ σ𝑘 𝑓𝑘 𝑖 − 1 ∙ 𝑎𝑘𝑙

𝑥1 = 𝐶 ; 𝑥2 = 𝐺 ; 𝑥3 = 𝐶 ; 𝑥4 = 𝐺

Observed sequence: C G C G

www.matstat.org

Forward algorithm, results

We had 𝑓𝐺+ 4 = 0.01104, and 𝑓𝐺− 4 = 0.001497, all other 𝑓𝑙 4 = 0

The chain ends after 4 symbols, so that the desired 𝑃 𝑥 is:

𝑃 𝑥 = ෍

𝑘

𝑓𝑘 𝐿

𝑃 𝑥 = 𝑓𝐺+ 4 + 𝑓𝐶− 4 = 0.01104 + 0.001497 ≈ 0.01254

Note: For long sequences, it is suggested to carry out the calculations in
log-space, in order to avoid underflow. Products are replaced by sums in
that case.

Recursion: 𝑓𝑙 𝑖 = 𝑒𝑙 𝑥𝑖 ∙ σ𝑘 𝑓𝑘 𝑖 − 1 ∙ 𝑎𝑘𝑙

𝑥1 = 𝐶 ; 𝑥2 = 𝐺 ; 𝑥3 = 𝐶 ; 𝑥4 = 𝐺

Observed sequence: C G C G

Uwe Menzel, 2011

Forward algorithm, results

𝑙 𝑓𝑙 1 𝑓𝑙 2 𝑓𝑙 3 𝑓𝑙 4

𝐴+ 0 0 0 0

𝐶+ 0.5 0 0.04237 0

𝐺+ 0 0.13125 0 0.01104

𝑇+ 0 0 0 0

𝐴− 0 0 0 0

𝐶− 0.5 0 0.01256 0

𝐺− 0 0.04475 0 0.001497

𝑇− 0 0 0 0

Forward algorithm

Uwe Menzel, 2011

Forward algorithm

Posterior probabilities

So far we have used the Viterbi algorithm to identify the state path 𝜋∗ that
maximizes the probabilities 𝑃 𝑥, 𝜋 and 𝑃 𝜋 | 𝑥 , respectively.
Another decoding approach is posterior decoding. For posterior decoding,
we calculate the probability 𝑃 𝜋𝑖 = 𝑘 | 𝑥 , i.e. the probability that the state
𝜋𝑖 is 𝑘 given the observed sequence, for all positions 𝑖 and all states 𝑘. We
then use the expression

ො𝜋𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘 𝑃 𝜋𝑖 = 𝑘 | 𝑥

to infer the most likely state for each position 𝑖. By doing so, we focus our
attention on particular states 𝜋𝑖 , rather than on the state path as a whole.
The state sequence that emerges from stringing together all the ො𝜋𝑖 is not
the same as 𝜋∗. It might even happen that two states 𝜋𝑖 and 𝜋𝑖+1 are
concatenated to become neighbors in such a state sequence, although a
transit between them is forbidden, because the transition probability
𝑎𝜋𝑖𝜋𝑖+1

is zero. Posterior decoding is especially useful when many state

paths approximately account for the same probability of the chain because
posterior decoding does not exclusively zoom in on the single most
probable path as calculated by the Viterbi algorithm.

www.matstat.org

Posterior probabilities

𝑃 𝑥, 𝜋𝑖 = 𝑘 = 𝑃 𝑥1, 𝑥2, … , 𝑥𝑖 , 𝑥𝑖+1, … , 𝑥𝐿, 𝜋𝑖 = 𝑘
= 𝑃 𝑥1, 𝑥2, … , 𝑥𝑖 , 𝜋𝑖 = 𝑘 ∙ 𝑃 𝑥𝑖+1, … , 𝑥𝐿 | 𝑥1, 𝑥2, … , 𝑥𝑖 , 𝜋𝑖 = 𝑘

The posterior probabilities can be calculated by making use of the forward
variables introduced above. Using the definition of conditional probability,
we can write:

The Markov property says that the observations 𝑥𝑖+1, … , 𝑥𝐿 can only depend
on the state 𝜋𝑖 , but not on 𝑥1, 𝑥2, … , 𝑥𝑖 , so that the latter simplifies to:

𝑃 𝑥, 𝜋𝑖 = 𝑘 = 𝑃 𝑥1, 𝑥2, … , 𝑥𝑖 , 𝜋𝑖 = 𝑘 ∙ 𝑃 𝑥𝑖+1, … , 𝑥𝐿 | 𝜋𝑖 = 𝑘

𝑓𝑘 𝑖 = 𝑃 𝑥1, 𝑥2, … , 𝑥𝑖 , 𝜋𝑖 = 𝑘

The first factor is the forward variable, which we can calculate using the
recursive algorithm presented above. The second factor is the so-called
backward variable, 𝑏𝑘 𝑖 . The backward variable can also be calculated
using a recursive procedure, the backward algorithm →

𝑏𝑘 𝑖

www.matstat.org

Backward algorithm

www.matstat.org

The backward algorithm starts at the last symbol in the chain. We define the
variable 𝑏𝑘 𝑖 , the probability of the chain up to observation 𝑥𝑖+1, counted
from the end of the chain, ending in state 𝜋𝑖 = 𝑘:

𝑏𝑘 𝑖 = 𝑃 𝑥𝑖+1, 𝑥𝑖+2, … , 𝑥𝐿 | 𝜋𝑖 = 𝑘

The 𝑏𝑘 𝑖 can be calculated recursively (𝐿 = length of the chain):

𝑏𝑘 𝑖 = ෍

𝑛

𝑒𝑛 𝑥𝑖+1 ∙ 𝑏𝑛 𝑖 + 1 ∙ 𝑎𝑘𝑛 𝑖 = 𝐿 − 1, 𝐿 − 2, … , 1

For 𝑖 = 𝐿 we initialise: 𝑏𝑘 𝐿 = 𝑎𝑘0 for all states 𝑘.

The indices 𝑛 and 𝑘 run through all states, e.g. 𝐴+, 𝐶+, 𝐺+, 𝑇+, 𝐴−, 𝐶−, 𝐺−, 𝑇−

The backward algorithm also delivers 𝑃(𝑥), by

𝑃 𝑥 = ෍

𝑛

𝑒𝑛 𝑥1 ∙ 𝑏𝑛 1 ∙ 𝑎0𝑛

Backward algorithm

www.matstat.org

For the example already discussed above, we had 𝑥1 = 𝐶, 𝑎0𝐶+ = 0.5 and 𝑎0𝐶− =
0.5, so that we the sum reduces to two terms:

𝑃 𝑥 = 𝑒𝐶+ 𝐶 ∙ 𝑏𝐶+ 1 ∙ 𝑎0𝐶+ + 𝑒𝐶− 𝐶 ∙ 𝑏𝐶− 1 ∙ 𝑎0𝐶−

𝑃 𝑥 = 1 ∙ 𝑏𝐶+ 1 ∙ 0.5 + 1 ∙ 𝑏𝐶− 1 ∙ 0.5 ≈ 0.01254

𝑃 𝑥 = ෍

𝑛

𝑒𝑛 𝑥1 ∙ 𝑏𝑛 1 ∙ 𝑎0𝑛Termination:

𝑏𝐶+(1) = 0.023323

𝑏𝐶−(1) = 0.0017679

Posterior decoding

Uwe Menzel, 2011

𝑃 𝑥, 𝜋𝑖 = 𝑘 = 𝑃 𝑥1, 𝑥2, … , 𝑥𝑖 , 𝜋𝑖 = 𝑘 ∙ 𝑃 𝑥𝑖+1, … , 𝑥𝐿 | 𝜋𝑖 = 𝑘

𝑓𝑘 𝑖 = 𝑃 𝑥1, 𝑥2, … , 𝑥𝑖 , 𝜋𝑖 = 𝑘 𝑏𝑘 𝑖

Having all the 𝑓𝑘 𝑖 and 𝑏𝑘 𝑖 , we can calculate 𝑃 𝑥, 𝜋𝑖 = 𝑘 for all 𝑖 and 𝑘:

𝑃 𝑥, 𝜋𝑖 = 𝑘 = 𝑓𝑘 𝑖 ∙ 𝑏𝑘 𝑖

𝑃(𝑥) can be taken from the forward- or the backward calculation.

We were actually seeking 𝑃 𝜋𝑖 = 𝑘 | 𝑥 . Using the definition of conditional
probability, we can write

𝑃 𝜋𝑖 = 𝑘 | 𝑥 =
𝑓𝑘 𝑖 ∙ 𝑏𝑘 𝑖

𝑃(𝑥)

so that we finally get:𝑃 𝜋𝑖 = 𝑘 | 𝑥 =
𝑃 𝑥, 𝜋𝑖 = 𝑘

𝑃(𝑥)

Posterior decoding

Uwe Menzel, 2011

Here, we have ො𝜋𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘 𝑃 𝜋𝑖 = 𝑘 | 𝑥 = 𝐶+𝐺+𝐶+𝐺+ , same as for Viterbi.

Comparison of the most probable path (Viterbi) and the path identified by
posterior decoding (forward-backward algorithm)

The library HMM provides a function for demonstration of the casino example:

library(HMM)
dishonestCasino()

the true states (simulated) →

colors: most probable path (Viterbi) →
black line: posterior probability

difference true ⇄ Viterbi) →

difference true ⇄ posterior prob.) →

