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Decoding: The Viterbi algorithm

We have seen that a Hidden Markov Model consists of a state path
{m;} which is not visible to the observer, and of visible symbols {x;}
that have been emitted by the states with some probability e (x;).
A typical task connected with Hidden Markov Models is to identify
the state path giving rise to the observed data. Uncovering the state
path in Hidden Markov Models is often called decoding.

A common and relatively simple method to fulfill that task is the
Viterbi algorithm. This algorithm attempts to find the most
probable path given the observed data:

n* = argmax, P(x,m) = argmax, P(m | x)

The algorithm is relatively simple because n* can be calculated in a
recursive manner, essentially reducing the computational load.
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Decoding: finding hidden states from
visible observations

The following example is taken from the book: Durbin et al. (Ed): Biological Sequence
Analysis, Cambridge University Press, 1998

o Observed sequence ("emissions”):
o CGCAG
o might have been generated by many state paths:
o CTGTC*TG*
o CGCG
o CTG C*G
o ...and 13 more (we have 2* = 16 possible state paths which can
lead to this observation)
o How to find the "best” state path ?
o the best path * is the path that maximizes P(x,w) —
o m*=argmax, P(x,m)
o practically not possible to calculate P(x, ) for all possible paths...
o = Viterbi - algorithm ("dynamic programming”)
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Transition probabilities
(see table part II)

Observed sequence ("emissions”): C G C G

Some transition probabilities (based on the table presented in part II):

p = 0.95 (stay in "+") ; g = 0.99 (stay in "-")

ac+e+ = 0.274-0.95 = 0.26

ac+c+ = 0.339-0.95 = 0.322

ac-¢- = 0.078-0.99 = 0.0772

ac-c- = 0.246 - 0.99 = 0.2435

ac+g- = (1 —0.95)/4 = 0.0125 small, switches from CpG island to non-island
ac-c+ = (1—0.99)/4 = 0.0025 small, switches from non-island to CpG island
agc+ = 0.13 (just half the probability that a C occurs)

agc- = 0.13 (just half the probability that a C occurs)

Note: transitions from the begin state to state ; will be denoted ag,, or agy,.
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Probability of the chain for some state paths:

Observed sequence:

P(x
CGCG

L

97T) — @B, Heﬂ'i (w’b) C Oy

1=1

P(X=C,GC,G|n=C*,G*,C*,G")
= aBC+ '8C+(C)
=013 1

y aC+G+-eG+(G)
- 0.26 - 1

state path 1, completely in island
* CLG+C+ * ec+(C) * ac+G+ * BG+(G) * aG+O
- 0.322 - 1 - 0.26 1 . 1=283-10"3

P(X=CG,C,G|mr=C",6-,C",G7)

= agc-*ec-(C) - ac-¢- - es-(G)
=0.13- 1 - 0.0772 -

1 .

state path 2, completely outside island

rag-c- - ec-(C) - ac-¢--ec-(G) - ag-o
0.2435- 1 -0.0772 1 - 1=1.89-10"*

PX=¢CGCG|t=C",67,C*,G")

state path 3, border non-island — island

= agc-€ec-(C) + ac-g-ec-(G) ag-c+-ec+(C) -ac+g+ - ex+(G) - ag+g
=013 1 - 0.0772 -1 -0.0025- 1 -0.26 1 +1=6.52-10°

13 more state paths to consider to find the most probable one ! (?)
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Viterbi algorithm

The task is to calculate the state path (m™) which yields the highest
probability for the chain, given the observed data:

n* = argmax, P(x,m) = argmax,; P(m | x)

A recursion to calculate " can be found in the following way:

Let us assume that we have the state path leading to the highest probability
of the chain up to observation x;_; with the constraint that the path ends in
state k, i.e. we fix r;_; = k. Let us call this probability v, (i — 1):

v(i—1) = maxﬂljnzj___,ni_zP(xl,xz, ey Xi_1, T4, T, v, T, T q = k)

We calculate this probability for all states k, so that we have the most likely
path yielding x4, x, ... x;_; for all possible end states m;_;. (That means that
index k runs through all states, yielding v,+(i — 1), v +(i — 1), v +(i — 1), etc.).

Now, we can obtain the most probable path to state [ at position i by finding
the maximum of v (i — 1) - a;; w.rt. index k. If we then multiply with the
emmision probability e;(x;), we have v;(i), the most probable path up to x;

ending in state [: _ _
V(D) = e;(x;) - max{vi (i — 1) - ag;}
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Viterbi algorithm

vk(i - 1) = maxnl,nz,...,ni_zp(xltxZi ey Xj—1, T, T,y e, T2, Tl = k)

Ty | % | Xg | e | o | Xieo| Xis The. state i1 pehlnd obser-
vation x;_1 is fixed (blue), the
! path leading to that point
Ti_y ‘\ , (red) is chosen to maximize
N\ o--@ N the probability up to x;_;.
\\ < \-‘ lll \\‘
\\ '// ‘\ ll ‘\\ / T[i_l == k
y 7 =
‘ \ / ‘ .
Tk X/ We calculate the optimal path for all
® k, i.e. for all cells in the last column.

The most probable path up to x; ending in state [ is then by recursion:
V(D) = e (x) - max{vi (i — 1) - ap;}

which means that we succeeded to proceed one step in the recursive scheme.
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Viterbi algorithm

Viterbi algorithm: the probabilities v; (i) can be calculated iteratively:

[vl(i) = e;(x;) - max; {vi,(i—1) - akl}] i=1,2,..,L

The recursion is initialised by setting the begin state:

vo(0) =1;v,(0) =0fork #0

By choosing the maximum of all v;(L) at the last position of the chain (i = L),
we have identified the most probable chain. It must be recorded for each i
which state switches to which one. This makes it then possible to backtrace
the most probable state path leading to this chain. The example below
demonstrates a complete recursion for a very short sequence, using the
transition- and emission probabilities defined in part 2.

The following example is taken from the book: Durbin et al. (Ed): Biological Sequence
Analysis, Cambridge University Press, 1998
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Recursion: v;(i) = e;(x;) - max; {vi, (i — 1)
Observed sequence: C G C G

© Qg

xo = B (beginstate) ; x; =C;x,=G;x3=C;x, =G

(=1 - v(1) =e(xg) - maxg {v(0) - ag} = e (C) - maxy {vi(0) - ay}
o theindices k and [ run through all states: A*,C*,¢*, T+, A~,C~,G~, T~
o the begin state B must be included fori = 1: vz(0) = 1,all other v, (0) =0

k runs through all symbols (A*,C*,G%, ...) to find the maximum of the product

L=A" 5 v+ (1) = e+ (C) - max{vi(0) - agy+} =0-
[=C" 5 ve+(1) = ec+(C) - maxy{vi(0) - age+} =1+
L=G" > v+(1) = eg+(C) - max {v(0) - agg+} =0
L=T" 5> vr+(1) = ep+(C) - max {vi(0) - ayp+} =0+
l=A" 5 v,-(1) = ey-(C) - maxp{ve(0) - agy-} =0-
l=C" > ve-(1) = ec-(C) - max{ve(0) - agc-} =1~
l=G" > ve-(1) = eg-(C) - maxy{vy(0) - ag-} = 0
L=T" > vp-(1) = er-(C) - max {vi(0) - agr-} =0

vz(0) -

vz(0)

vz(0) -
vz(0) -
vz(0) -
vz(0) -
vz(0) -
vz(0) -

agct+ = 0
*Agct+ = 1
agct+ = 0
Apc+ =
Agc- =
Agc- =
aAgc—- = 0
aAgc—- = 0

-1-0.13 =0.13

+1-0.13 =0.13

The begin state switches to C* or C~, with equal probability. It is important to
remember which transitions have been made going from i — 1 to i.
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Recursion: v;(i) = e¢;(x;) + maxy {vi,(i — 1) - ay}
Observed sequence:C G C G
Xo = B (beginstate) ; x; =C;x,=G;x3=C;x, =G

The obtained results can be arranged in a table:

state [ start: v;(0) vi(1) Observed sequence:

CGCG
B 1, 0
RN x, = B (begin state
A+ 0 \\‘ \\ 0 0 ( g )
\‘ \\‘ xl = C
c* 0o\ 0.13 x, =G
G+ O ‘\\\ 0 x3 = C
A X, =G
T+ 0 N0 4
A 0 \‘\,‘ 0 [t is important to remember what
C- 0 0.13 transition was made at each iteration.
G~ 0 0 _____arrows indicate the transition
leading to v;(i)
T- 0 0 510
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Example from: Durbin et al. (ed.), Biological sequence analysis, Chapter 3

Observed sequence: C G C G

Recursion: v;(i) = e;(x;) - maxy {vi(i—1)

xo = B (beginstate); x; =C;x, =G;x3=C;x, =G

© g}

i =2 - v(2) = elxy) - max {vi(1)

gy} = e (G) - maxy {vi(1) - apld

o theindices k and [ run through all states: A*,C*,¢*,T*,A~,C~,G~, T~
o we had: v +(1) = 0.13 and vo-(1) = 0.13 ; all other v;(1) = 0

k runs through all symbols (A*,C*,G™, ...) to find the maximum of the product
A

=A% 5 v,+(2) = e4+(G) - max; {vi (1) -
[=C* > v+(2) = e +(G) - max,{v,(1) -
=G > v:+(2) = ec+(G) - maxy{v,(1) -
[=T% 5> v:+(2) = ep+(G) - max{vy (1) -
[ =A" 5 v,-(2) = e4-(G) - maxy{v,(1) -
[ =C" - ve-(2) = ec-(G) - max{vy (1) -
=G > v-(2) = e6-(G) - max{vi (1) -
=T~ > vr-(2) = er-(G) - max,{vi (1) -

~
Apa+} =0
akc+} =0-
Qe+ =1-
akT+} =0-
aa-}=0-
Apc-3=0-
Apg-3=1-
axr-}=0-

maxi{..} =0

max{..} =0

0.0338 = 0.0338 (see next page)
maxg{..} =0

max{..} =0

maxi{..} =0

0.01 = 0.01 (see next page)
max{..} =0

These results can be recorded in the next column of the table —»
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Auxiliary calculation: max;{vy (1) - aj;+}
k={A*, C* G*, T* A~,C,G~,T"}

we had: v +(1) = 0.13 and v,-(1) = 0.13; all other v;{(1) = 0

k Vi (1) - ayg+ V(1) - g+

A* 0+ aysge 0

c* | 013-apegr 013-0.26 = 00338 | poim=
G* 0:ag+c+ 0

T 0 ap+g+ 0

A™ 0-ay-c+ 0

€~ | 043-ac-g+ | 0.13-0.0025 = 0.000325

G~ 0-ag-¢+ 0

T™ 0-ap-c+ 0

I:> max{vi(1) - a,c+} = 0.0338, by switching from C* to G*
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Auxiliary calculation: max; {vy (1) - ays-}
k={A*,C*,G*, T+ A",C~,G~,T")

we had: v +(1) = 0.13 and v,-(1) = 0.13; all other v;{(1) = 0

k V(1) - agg- Vi (1) - ayg-

At 0-ay+g- 0

ct 0.13-ag+g,- | 0.13-0.0125 = 0.001625

Gt 0-ag+c- 0

T* 0 Ap+g- 0

A~ 0-ay—¢- 0

C™ 0.13 - ap-g- 0.13-0.077 = 0.01001 E;‘;‘;ﬁg;‘;c;_
G~ 0-ag-¢- 0

T™ 0-ar-¢- 0

I:> max, {vi(1) - ags-} = 0.01001, by switching from C~ to G~
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Recursion: v;(i) = e;(x;) - maxy {vi (i — 1)
Observed sequence: C G C G

X9 = B (beginstate); x; =C;x, =G ; x3 =

© g}

We calculated v;+(2) = 0.0338 and v4-(2) =

statel start: v;(0) vi(1) vi(2)
B 1y, 0
A+ 0 \\‘\ \\\\\ 0
\\ \l
ct 0 0.13_
\ S
G*t 0 0 0.0338
T+ 0 N0
A 0 o
|
C- 0 0.13._
G- 0 0 *0.01001
T~ 0 0

www.matstat.org

0.01001 ; all other v;(2) = 0

Observed sequence:

CGCG

xo = B (begin state)
x1=C

X, =G

X3 =C

Xy =G

arrows indicate the transition

“""* leading to maximum v, (i)



Example from: Durbin et al. (ed.), Biological sequence analysis, Chapter 3

Observed sequence: C G C G

Recursion: v;(i) = e;(x;) - maxy {vi(i—1)

xo = B (beginstate); x; =C;x, =G;x3=C;x, =G

© g}

i =3 - v(3) = ¢x3) - maxy {vi(2)

c Ay} = e (C) - maxy {vi(2) - ag}

o theindices k and [ run through all states: A*,C*,¢*,T*,A~,C~,G~, T~
o we had v;+(2) = 0.0338 and v;-(2) = 0.01001 ; all other v;(2) =0

k runs through all symbols (A*,C*,G™, ...) to find the maximum of the product
A

=A% 5 v,4(3) = e,+(C) - max, (v, (2)

l=C" > v +(3) = e +(C) - max{v,(2) -

l=G" > v +(3) = ep+(C) - maxy {vi(2)
l=T" 5> v+(3) = ep+(C) - max;{v,(2)
[ =A" 2 v,-(3) = e4-(C) - maxy{v(2)

[ =G~ - vs-(3) = e6-(C) - max{vy(2)
=T > vr-(3) = er-(C) - maxy{vy(2)

~
cQpa+}=0-
akc+} =1
cApe+}=0-
cQr+}=0-

*Qpp-}=0-
l=C" > vc-(3) = ec-(C) - maxy{ve(2) -

arc-3}=1-

‘agg-}=0-
agr-}=0-

maxg{..} =0

0.011 = 0.0108836 (next page)
maxg{..} =0

max{..} =0

maxi{..} =0

0.00244 = 0.00244244 (next page)
maxi{..} =0

maxi{..} =0

These results can be recorded in the next column of the table —»
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Auxiliary calculation: max; {vy(2) - ajc+}
k={A*, C* G*, T* A~,C,G~,T"}
we had v;+(2) = 0.0338 and v;-(2) = 0.01001 ; all other v;(2) =0

k Vi (2) - agc+ Vi(2) - agc+
At 0 ay+q+ 0
Cc* 0:ac+c+ 0 _
G* 0.034 - ag+c+ 0.0338 - 0.322 = 0.0108836 ‘rc?:r)l(;l;rtl;r:GerCJr
T 0 Qp+c+ 0
A 0-ay-c+ 0
C~ 0-ac-c+ 0
G~ 0.01-ag-c+ 0.01-0.0025 = 0.000025
T~ 0-ap-c+ 0

|:> max {vi(2) - ax-+} = 0.0108836, by transition from G*to C*

Uwe Menzel, 2011



Aucxiliary calculation: max; {vy(2) - ayc-}

k={A%,C*,G*, T*,A~,C~,G~,T"}

we had v;+(2) = 0.034 and v;-(2) = 0.01; all other v;(2) =0

k vi(2) - ayc- Vi (2) - agc-

At 0 ay+,- 0

c* 0-ac+c- 0

G* 0.034 - ag+- 0.034 - 0.0125 = 0.000425
T 0 Qp+c- 0

A~ 0-ay-c- 0

- 0-ap-c- 0

G~ 0.01001 - ag-- 0.01001 - 0.244 = 0.00244244
T™ 0-ar-c- 0

maximum =
transition G~ C~

I:> max{vy(2) - arc-} = 0.00244244, by switching from G~ to C~
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Observed sequence: C G C G

Recursion: v;(i) = e;(x;) - maxy {vi, (i — 1) « ay;}

X9 = B (beginstate) ; x; =C;x, =G;x3=C;x, =G

We had v-+(3) = 0.0108836 andv.-(3) = 0.00244244; all other v;(3) =0

state [ start:v;(0)  v;(1) v1(2) v;(3)

B 1, 0 0 0
At 0\, 0 0 0
ct 0 \ “013_ 0 00109

\\\ \\‘ ,,X
G+ o N 0 0.034 0
T+ 0 0 0 0
A~ 0 N0 0 0

A |
c- 0 0.13 . 0  0.00244
e x

G- 0 o 001 o0
T 0 0 0 0

www.matstat.org

Observed sequence:
CGCG

xo = B (begin state)
X1 = C

x2=G
x3=C
x4=G

arrows indicate the transition
leading to maximum v; (i)



Example from: Durbin et al. (ed.), Biological sequence analysis, Chapter 3

Observed sequence: C G C G

Recursion: v;(i) = e;(x;) - maxy {vi(i—1)

xo = B (beginstate); x; =C;x, =G;x3=C;x, =G

© g}

t=4 - vi(4) = exy) - maxg {v(3) - ag} =

o theindices k and [ run through all states: A*,C*,¢*,T*,A~,C~,G~, T~
o we had v +(3) = 0.0108836 andv.-(3) = 0.00244244; all other v;(3) =0

e;(G) - maxy {vp(3) - ax}

k runs through all symbols (A*,C*,G™, ...) to find the maximum of the product
A

= A% 5 v,4(4) = e,+(6) - max (v (3)
l=C" > v +(4) = e +(G) - max{v,(3)

l=C" > ve-(4) = ec-(G) - maxy{vy(3)

~
'ClkA+}=0°

y akc+} =0-
l=G" > v+(4) = ec+(G) - max{vi(3) -
=T 5> vp+(4) = ep+(G) - max; {vi,(3) -
[=A" 5> v,-(4) = e4-(G) - max{vy(3) -

ClkG+} == 1 *
ClkT+} - 0 *
Apa-3=0-

‘Qpc-31=0-
=G~ - vs-(4) = eg-(G) - maxy{v(3) -
=T > vr-(4) = er-(G) - max, {vi(3) -

ag-}=1-
ar-}=10-

maxi{..} =0

maxi{..} =0

0.0028297 = 0.0028297 (next page)
maxi{..} =0

maxi{..} =0

max{..} =0

1.88068 - 10~* = 1.88068 - 10~*
maxi{..} =0

These results can be recorded in the next column of the table —»
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Auxiliary calculation: max;{vy(3) - aj;+}
k={A*, C* G*, T* A~,C,G~,T"}
we had v-+(3) = 0.0108836 andv.-(3) = 0.00244244; all other v;(3) =0

k Vi(3) - ac+ Vi (3) - ape+
AT 0 aprgr 0 maximum =
c+ 0.011 - ac+q+ 0.0108836 - 0.26 = 0.002829736 | transition C*G™*
G* 0-ag+s+ 0
T 0 ap+c+ 0
A 0-a,-¢+ 0
C 0.00244 - a,-+ 0.00244244 - 0.0025 = 6 - 107°
G~ 0-ag-¢+ 0
T~ 0-ap—¢+ 0

I:> max {vi(3) - a,c+} = 0.002829736, by switching from C* to G*
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Auxiliary calculation: max; {v,(3) - axs-}
k={A*,C*,G*, T+ A",C~,G~,T")
we had v-+(3) = 0.0108836 andv.-(3) = 0.00244244; all other v;(3) =0

k Vi (3) - ayg- Ve (3) - agg-
A+ O * aA+G— O
c* 0.011 - ac+¢- 0.011-0.0125 = 1.375-107*
G+ O * ClG+G— 0
T+ O ¢ CLT+G— O
A~ 0- Apg—G— 0
_ maximum =
C 0.00244 - Ac-G- ioloéggré;}g : ;)(')0_747 transition C~ G~
G~ 0- Ag—¢~ 0
T~ 0- aT—G— 0

I:> max,{vi(3) - axc-} = 1.88068 - 104, by switching from C~ to G~
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Observed sequence: C G C G

Recursion: v;(i) = e;(x;) - maxy {vi, (i — 1) « ay;}

X9 = B (beginstate) ; x; =C;x, =G;x3=C;x, =G

We had v;+(4) = 0.0028297 and v;-(4) = 1.8807 - 10~*; all other v;(4) = 0

statel start: v;(0) vi(1) vi(2) v1(3)

B 1y, 0 0 0

At 0 0 0 0

ct 0 " 013 - 0 0011
G* 0 0 w0034 o
Tt 0 0 0 0

A 0 Voo 0 0

C- 0 "043 ~_ 0 000244
G~ 0 0o 001" o0

T~ 0 0 0 0

Uwe Menzel, 2011

vi(4)
0
0
0
A
0.00283
0
0
0
R}
1.88-10~*
0

Observed:
CGCG

X9 = B (begin)
X1 = C

x2=G
X3:C
X4:G



Viterby algorithm

statel start: v;(0) vi(1) v1(2) vi(3) vi(4)

B 1, 0 0 0 0

At 0 \\‘\\ 0 0 0 0 Observed:
\ \‘ C G C G
ct 0 \ 013 _ 0 0.011 -_ 0
\ \\\\ ”,v “s‘ — .
G* 0 \ 0 0034 0 0.00283 *o = B (begin )
\ X1 = C

T+ 0 “‘ 0 0 0 0 xz - G
A- 0 Y0 0 0 0 x3 =C

_ x4_ - G
C 0 0.13 ._ 0 0.00244 . 0

\N\ ,/' \l

G~ 0 0 * 001 7 0 1.88-10~*
T 0 0 0 0 0

The largest v;(4), 0.00283, is the probability of the most probable chain.
Backtracking the state path leading to that chain identifies the path yielding to
maximum P(x, 7). Here, we find the path BC*G*C*G™, only including “+"-
states — we found that the sequence originates from a CpG island.
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Viterby algorithm

QR C:\Users\Uwe\Desktop\ TALKS_POSTERS\LECTURES\HMM-Talk am HK\HMM_Viterbi_CGCG.R - R Editor o | ® | =& |
library (HMM) A

states — C{'lA+"' flc+ll' 'IIG+II' 'IIT+II' 'IIA_II' flc_ll' 'IIG_II' 'IIT_II}

symbols = c("A", "C", "G", "T")

CpG island example
trans prob = get(load("trans prob HMM.RData")) p p
emission _prob = get(load("emission prob HMM.RData"))

start probs = ¢(0.12, 0.13, 0.13, 0.12, 0.12, 0.13, 0.13, 0.12)

names (start probs) = c("BA+", "BC+", "BG+", "BT+", "BA-", "BC-", "BG-", "BT-")
start_probs

2 BA+ BC+ BG+ BT+ BA- BC- BG—- BT-

# 0.12 0.13 0.13 0.12 0.12 0.13 0.13 0.12

hmm = initHMM(states, symbols, startProbs = start probs,
transProbs = trans_prob, emissionProbs = emission_prob)

observation = c("C", "G", "C", "G") # observed data

vit = wviterbi (hmm, observation) # decoding

Vit # flc+ll Ilg+fl flc+ll Ilg+fl Same result v
€ >

o the files trans_prob_HMM.Rdata and emission_prob_HMM.Rdata are linked on matstat.org
Uwe Menzel, 2011




Viterby algorithm @

Jsers\Uwe\Desktop\ TALKS_POSTERS\LECTURE : . .rbi2_CGCG. ditc === <

library (HMM) ~

states = c("A+", "C+", "G+", "T+", "A-", "C-", "G-", "T-")
symbols = c("A", "C", "G", "T")

trans prob = get(load("trans prob HMM.RData"))

emission prob = get(load("emission_prob HMM.RData"))

start probs = ¢(0.12, 0.13, 0.13, 0.12, 0.12, 0.13, 0.13, 0.12)

names (start_probs) = c("BA+", "BC+", "BG+", "BT+", "BA-", "BC-", "BG-", "BT-")

hmm = initHMM(states, symbols, startProbs = start_ probs,
transProbs = trans prob, emissionProbs = emission prob)

observation = c("C", "G", "C", "G") # observed data
source ("viterbi2.R") # slightly changed function
vit2 = viterbi2 (hmm, observation) # decoding

exp (vit2Svmatrix)

# states 1 = 3 a slightly changed function

¥ A+ 0.00 0.00000 0.00000000 0.0000000000

¥ C+ 0.13 0.00000 0.01088360 0.0000000000 "viterbi2.R” shows also the details

¥ G+ 0.00 0.03380 0.00000000 0.0028297360 of the calculation

¥ T+ 0.00 0.00000 0.00000000 0.0000000000

¥ A- 0.00 0.00000 0.00000000 0.0000000000

¥ Cc- 0.13 0.00000 0.00244244 0.0000000000

= G- 0.00 0.01001 0.00000000 0.0001880679

- T— 0.00 0.00000 0.00000000 0.0000000000 Uwe Menzel, 2011




Viterby algorithm @

library (HMM)

Dishonest Casino

states c("Fair", "Loaded")
symbols 1:6

trans prob = matrix(c(0.95, 0.05, 0.1, 0.9), nrow = 2, byrow = TRUE)

emission prob fair = rep(l/€, 6€)

emission prob loaded = c(rep(0.1, 5), 0.5)

emission prob = rbind(emission prob fair, emission prob loaded)
nrow (emission_prob) == length(states) # IMPORTANT!, must be TRUE

hmm = initHMM(states, symbols, transProbs = trans prob,
emissionProbs = emission_ prob)

## simulate observation:

fair part = sample(1l:6, 500, replace = TRUE, prob = rep(l/6, €))
loaded part = sample(l:6, 500, replace = TRUE, prob = c(rep(0.1, 5),
observation = c(fair_part, loaded part)

## Decoding, Viterbi:

viterbi = viterbi (hmm, observation)
viterbi

Uwe Menzel, 2011
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Title: |,&nalwing a Hidden Markoy Model ; Hidden Markow Models (Statistics Toolbox) '|

Statistics Toolbox
Analyzing a Hidden Markov Model

This section explains how 1o use functions in the Statistics Toolbox 1o analyze hidden Markow models, For illustration, the
saction uses the example described in Bxample of a Hidden Markow Model. The section shows haow to recowar information
about the model, assuming that you do not know some of the model's parameters, The section covers the following topics:

» Sotting Up the Model and Cenerating Data
 Computing the Most Likely Sequence of Statas
w Estimating the Transition and Emission Matrices .

. |
= Changing the Probabilities of the Initial States MATLAB CaSIHO example'
» Example: Changing the Initial Probakilitiss

Setting Up the Model and Generating Data

Thiz section shows how to set up a hidden Markow model and use it 1o generate data. First, create the transition and
amission matrices by entaring the following commands.,

TEANS = [.9 .1; .05 .95;];

EMI: = [1/%, 1%, 1/, 1/, 1/5, 1/6;...
A2, 112, 112, 112, 1712, 1.12];

Mext, generate a random sequence of emissions from the maodel, seq, of length 1000, using the function hmngenerate.
Tou can also return the corresponding random sequence of states in the model as the second output, states.

[seq, states] = hmmgenerate(1000, TRANS, EMIS);

Mote |n generating the sequences seq and states, hmmgenerate begins with the maodel in state i, = 1 at step
0. The model then makes a transition to state iy at step 1, and returns i as the first entry in states.

How the Toolbox Ganerates Fandom Sequences Computing the Most Likely Sequence of States

@ 19842006 The MathWiorks, Inc, « Terms of Lse « Patents « Trademarks « Acknowladgments




Statistics Toolbox
Computing the Most Likely Sequence of States

suppose wou know the transition and emission matrices, TRANS and EMIS. If wou chserve a sequence, seq, of emissions,
how can you compute the most likely sequence of states that generated the sequence? The function hmmywiterhi uses the
Yiterbi algorithm to compute the most likely sequence of states that the modeal would go through to generate the given
sequence of emissions,

Tikelystates = hnmviterbi(seq, TRANS, EMIS); Viterby algorithm

Tikelystates is a sequence of the same length as seq.

To test the accuracy of hmmwiterbi, you can compute the percentage of the time that the actual sequence states agrees
with the sequence 1ikelystates.

suni states==11kelystates]) 1000

MATLAB: Casino example!

dans =

0.8200

This shows that the most likely sequance of states agrees with the actual sequence 582% of the time. MNote that wour results
might differ if wou run the same commands, because the sequence seq is random.

Note The states at the beginning of the sequence returned by hmmwiterbi are less reliable because of the
computational delay in the Witerbi algorithm,

Analyzing a Hidden Markow Maodel Estimating the Transition and Emission Matrices

© 1954-2006 The MathWorks, Inc, « Terms of se « Patants « Trademarks « Acknowladgments




Viterby algorithm: Remarks

o Result: we have found that the whole sequence CGCG is within a CpG
island

o Method works for arbitrary long sequence and might then switch
between long stretches of 4+ and - states, i.e. between CpG islands and
other genomic sequence

o Forlong sequences, it is suggested to calculate the log-probability
instead of probability, in order to avoid underflow during computation.
Products are replaced by sums when doing so.

www.matstat.org



Trellis-Diagramm
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