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1. Hidden Markov Models (HMM)

o short repetition

2. Most probable state path

o Viterbi algorithm

3. Forward-Backward algorithm

o forward and backward probabilities

4. Expectation Maximization (EM)

o notation adapted for HMM’s

5. EM for HMM

o with an alternative derivation of the general EM scheme

6. Maximum A Posteriori (MAP) estimation for HMM

o very short introduction



1. Hidden Markov Models

o we have a Markov chain, not visible for the observer (hidden)
o every state of the Markov chain can ”emit” an element of a set of

observable characters (symbols) with some probability
o the Markov chain itself forms the state path 𝜋𝑖

o the emission probabilities are labeled 𝑒𝜋𝑘
𝑥𝑖 , defining the probability that

the state 𝜋𝑘 emits the symbol 𝑥𝑖 .
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Note: transitions probabilities from the (virtual) begin state will be denoted 
𝑎ℬ𝜋𝑖

or 𝑎0𝜋𝑖
. They are also labelled start probabilities.

see  HMM_Lecture_2.pdf 



Hidden Markov Model
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Joint probability of the chain of states and symbols:

transition probability 𝑘 → 𝑙 (within state path)

emission probabilities, from state 𝑘 to symbol 𝑏

𝜃 = 𝑎𝑘𝑙, 𝑒𝑘 𝑎0𝑘 stands for whole parameter set, 𝑎0𝑘 = start probabilities

see  HMM_Lecture_2.pdf 



Continuous Density Hidden Markov Model

Uwe Menzel, 2008

The emission probabilities outgoing from state 𝑘 can also be modelled by a
continuous random variable. A prominent example is Gaussian emission,
where state 𝑘 emits the observation 𝑥𝑖 according to a normal distribution
with mean 𝜇𝑘 and standard deviation 𝜎𝑘:
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Having 𝑘 different states, we have 𝑘 Gaussians with different 𝜇𝑘 and 𝜎𝑘. In
many cases, it is favourable to model the emission probabilities with a
mixture of Gaussians.



Parameters of the Markov chain and their 
properties
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𝐾 : number of states ;   𝐿 : length of the chain

one of the 𝑥𝑖 must be emitted from state 𝑘 (for discrete 𝑥𝑖)

the state 𝑘 must switch over to some other state 𝑙

when 𝑥 ∈ ℝ

The 𝑎𝑘𝑙 do not depend on 𝑖, because we assume a homogenous chain:



2. Find the state path given the observations 
and the model
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o observations: 𝒙 = 𝑥𝑖 ; the 𝑥𝑖 are known variables
o model: 𝜃 = 𝑎𝑘𝑙 , 𝑒𝑘 𝑎0𝑘 ; the symbol 𝜃 stands for all parameters

most probable path

o 𝜋∗: state path that lies behind the observed data 

o 𝐾𝐿 possible paths 

o → 2 ∙ 𝐿 ∙ 𝐾𝐿 arithmetic operations 

o → brute force approach fails 

conditional probability



Find the single best path for given 𝑥 and 𝜃
- Viterbi algorithm -
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Define auxiliary variable 𝛿𝑖 𝑘 :

This is the probability of the chain based on the most probable
path up to position 𝑖 − 1, ending in state 𝑘 at position 𝑖. It can be
recursively calculated:

o indices 𝑙 and 𝑘 run through all states 1 … 𝐾
o index 𝑖 runs through positions in the Markov chain 1 … 𝐿



- Viterbi algorithm -

Uwe Menzel, 2008

recursion

Proof of recursion:

extract 𝑥𝑖+1 , using cond. probability

auxiliary variable

Markov 
property

extract 𝜋𝑖+1 , 
cond. probability

Markov 
property

choose maximal 𝜋𝑖 = 𝑘



The Viterbi algorithm

Uwe Menzel, 2008

𝑎0𝑙 = 𝑃 𝜋1 = 𝑙 : probability that the 
chain starts with state 𝑙

Initialise all 𝛿 at position 1 of the chain, for all states 1 … 𝐾:

pointer which will be used when tracing back from the end of the chain

pointer 

the max. probability is the maximum 𝛿 (over 
all states) at the end of the chain

the last element (at position L) of the most probable path

the other elements of the most probable path can be 
backtracked using the pointer 

index 𝑙 and 𝑘 run through states
index 𝑖 runs through positions in chain



3. The Forward and Backward probabilities
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We’ll need the forward and backward probabilities later when deriving the
Expectation Maximization algorithm for Hidden Markov Models.

Defintion, forward probability

This is the probability of the observations up to position 𝑖 when having state 𝑘
at position 𝑖.  It can be calculated recursively:

o indices 𝑙 and 𝑘 run through all states 1 … 𝐾
o index 𝑖 runs through positions in the Markov chain 1 … 𝐿 − 1

The recursion starts with

𝑎0𝑙 is the probability that the chain starts with state 𝑙 : 𝑎0𝑙 = 𝑃 𝜋1 = 𝑙 .



Forward probabilities
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Definition, forward probability

Initiation:

cond. probability

use definitions

Recursion:

Proof of recursion: observations 1 … 𝑖



Forward probabilities
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Proof of recursion:

marginal rule

cond. probability

Markov property

cond. probability

Markov property

use definitions

q.e.d.



Forward probabilities
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The Forward algorithm

Probability of the complete chain:

Proof:

marginal rule

Initiation:

Recursion:

Termination: probability of the observation



Backward probability
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We’ll need the forward and backward probabilities later when deriving the
Expectation Maximization algorithm for Hidden Markov Models.

Definition, backward probability

This is the probability of the observations from positions 𝑖 + 1 up to the end of 
the chain, when having state 𝑘 at position 𝑖.  It can be calculated recursively:

o indices 𝑙 and 𝑘 run through all states 1 … 𝐾
o index 𝑖 runs through positions in the Markov chain 𝐿 − 1 … 1

The recursion starts with



Backward probability
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backward probability

Proof of recursion:

a b c

marginal rule

a b c

cond. probability,  Markov property

Markov property

use definitions



Backward probability
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Show that the recursion must start with

according to the definition of 𝛽

marginal rule

a b c

a b c b c

Markov property

with we can write:

which is the general recursion for 𝑖 = 𝐿 − 1



The posterior probabilities
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This is the probability of having state 𝑘 at position 𝑖, given the observations 𝑥
and the model 𝜃. It can be expressed in terms of the forward- and backward
probabilities:

posterior probability for state 𝜋𝑖

The individually most likely state at position 𝑖 is:

Another auxiliary variable is 𝛾𝑖 𝑘 :

These expressions are interesting if the most probable state at some particular
position of the chain is in the main focus, rather than the most probable path
spanning the whole chain as calculated by the Viterbi algorithm.



Show that  𝑃 𝑥 | 𝜃 = σ𝑘 𝛼𝑖 𝑘 ∙ 𝛽𝑖 𝑘

Uwe Menzel, 2008

marginal rule

Markov property

conditional probability

use definitions

forward probability: backward probability:



The posterior probabilities
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Proof:

conditional probability

a b

a b a

use Markov property

definitions



Probabilities 𝜉𝑖 𝑘, 𝑙
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Another auxiliary variable is called 𝜉𝑖 𝑘, 𝑙 :

Definition

This is the probability of having state 𝑘 at position 𝑖, and having state 𝑙 at
position 𝑖 + 1, given the observations 𝑥 and the model 𝜃. It can be expressed in
terms of the probabilities introduced earlier:

The denominator can also be written as a double sum over all states:



Uwe Menzel, 2008

Definition of 𝜉

Calculation of 𝜉

Proof:
conditional 
probability

reordered

Markov property

𝛼𝑖 𝑘

𝑎𝑘𝑙

Markov property

q.e.d.



Probabilities 𝜉𝑖 𝑘, 𝑙
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Definition

From this definition, we see that suming up over 𝑙 yields the above 
defined variable 𝛾𝑖 : 

by the marginal rule



4. Expectation-Maximization (EM) 
Algorithm
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o calculates Maximum likelihood estimators for parameters in models that 
contain unobserved (latent, hidden) variables.

o incomplete-data problems (HMM, missing data problems)
o models with ''artificially'' introduced latent variables (Gaussian 

Mixture Models: GMM)

o EM emerged from a number of previous, ''intuitive'' algorithms

o generalized as EM by Dempster, Laird, and Rubin in 1977 (1)

o Recursive algorithm (E-step; M-step) 

o EM is often computationally easier than other methods

(1) Dempster, A.P., Laird. N.M., Rubin, D.B.: Maximum-Likelihood from 
incomplete data via the EM algorithm. J. Royal Statist. Society, 1977



General approach used in EM 
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o Observed data: 𝑥 (visible part of the chain)

o latent (hidden) data: 𝜋 (state path)

o parameters of the model: 𝜃 = 𝑎𝑘𝑙 , 𝑒𝑘 𝑏 , 𝑎0𝑙 with  𝑎0𝑙 = 𝑃 𝜋1 = 𝑙

likelihood

log-likelihood

Expectation-Maximization algorithm: 

o calculate the conditional expectation 𝐸𝜋 | 𝑥,𝜃𝑡
of the log-likelihood 

with respect to 𝜋 given the observation 𝑥 and some known 𝜃𝑡

o 𝜃𝑡 is either the 1st guess of the parameter set, or the parameter set 
obtained on the precedent iteration step

o this is eqivalent to generating 𝜋 according to the distribution 
𝑃 𝜋 | 𝑥, 𝜃𝑡 and average



Conditional Expectation of the log-likelihood
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identity, cond. 
probability

Find expectation by applying  σ𝜋 𝑃 𝜋 | 𝑥, 𝜃𝑡 ∗ (with some known model 𝜃𝑡):

This equation is valid for any value of 𝜋 → whatever the value of 𝜋 on the
right-hand side is, the left-hand side is still log 𝑃 𝑥 | 𝜃 . It follows that the
expectation of the right-hand side is also log 𝑃 𝑥 | 𝜃 . Formally, this can be
shown by applying the operator σ𝜋 𝑃 𝜋 | 𝑥, 𝜃𝑡 ∗ to both sides of the equation.
The left side is unchanged because it does not depend on 𝜋 and
σ𝜋 𝑃 𝜋 | 𝑥, 𝜃𝑡 = 1 :



Increasing the log-likelihood
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Task: Find a new value of 𝜃 so that: ∆𝐿 = 𝐿 𝜃 − 𝐿 𝜃𝑡 ≥ 0 (likelihood increases)

always ≥ 0 (see below)

increases the log likelihood !

with



Iterate through E-step and M-step until the relative change of 𝜃 gets small.
EM improves the likelihood on each iteration (at least, it cannot decrease).
EM guarantees that a stationary point of the likelihood is found. This point
is not nessecarily a global maximum of 𝐿 𝜃 , but can also be a local
maximum or a saddle point.

EM - Iteration

Uwe Menzel, 2008

1. Initialise the parameters (1st guess) :

E-step

𝑄 𝜃, 𝜃𝑡 is the conditional expectation 𝐸𝜋 | 𝑥, 𝜃𝑡
of the log-likelihood, 

𝑃 𝜋, 𝑥 | 𝜃 ,  with respect to 𝜋 given the observation 𝑥 and the known 
parameters (model) 𝜃𝑡

2. Calculate the expectation (Q-function):

3. Find the parameters which maximize the expectation:

M-step

return to E-step or terminate if 𝜃𝑡 is stationary



The upper bound for 𝐻 𝜃, 𝜃𝑡

www.matstat.org

Jensen’s inequality (for –log, which is a convex function):

if 

use Jensen’s inequality

𝑎𝜋𝐵𝜋

(see Appendix)

𝐻 𝜃𝑡, 𝜃𝑡 is an upper bound for 𝐻 𝜃, 𝜃𝑡



EM - What have we won?
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likelihood, maximize wr.t. 𝜃

𝑄, maximize wr.t. 𝜃

At a first glance, the task of maximizing the expectation 𝑄 𝜃, 𝜃𝑡 doesn’t
seem to be much of an easier task. However, in many situations, solving
the second equation can be more convenient than maximizing 𝐿 𝜃
directly, if the latent variables 𝜋 are chosen in a beneficial manner. In
Hidden Markov Models, the latent variables are given by the state path
variables.
The EM scheme improves the likelihood on each iteration step (at least, it
cannot decrease in any iteration). That makes EM appealing for practical
applications.



5. EM for Hidden Markov Models
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Probability of the ''complete data‘’ (= observations 𝑥 plus state path 
variables 𝜋) given the model (the parameters) 𝜃:

Using the definitions of the variables,  𝑃 𝑥, 𝜋 | 𝜃 can be written:

Aim: Adjust the model 𝜃 to maximize the likelihood. In order to do that, we 
have to calculate the conditional expectation (Q-function) first (E-step)



EM for HMM,  E-step
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reorder product, log

𝑄 separates into 3 parts:

recall that



EM for HMM,  E-step
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o 𝑄𝐴 depends only on 𝑎0𝑙 = 𝑃 𝜋1 = 𝑙 - initial state 

o 𝑄𝐵 depends only on 𝑒𝑘 𝑥𝑖 = 𝑃 𝑥𝑖 | 𝜋𝑖 = 𝑘 - emission probabilities

o 𝑄𝐶 depends only on 𝑎𝑘𝑙 = 𝑃 𝜋𝑖+1 = 𝑙 | 𝜋𝑖 = 𝑘 - transition probabilities

o That means that the 3 parts can be maximized separately →

o (Note that 𝑃 𝜋 | 𝑥, 𝜃𝑡 only depends on the known model 𝜃𝑡). 

The model includes the parameter set: 𝜃 = 𝑎𝑘𝑙 , 𝑒𝑘 𝑥𝑖 , 𝑎0𝑙



EM for HMM,  M-step
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1. Maximization of 𝑸𝑨

We have to keep in mind that 𝜋 is a vector: 𝜋 = 𝜋1, 𝜋2, … , 𝜋𝐿

posterior probability, with known 𝜃:

all other sums add up to 1, 
marginal rule

𝑘 runs over all possible states



EM for HMM,  M-step
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Maximization of 𝑸𝑨, continued

𝑄𝐴 has to be maximized w.r.t. 𝑎0𝑘, with the constraint

Method of Lagrange multiplier (see Appendix):

1



EM for HMM,  M-step
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2. Maximization of 𝑸𝑩

We have to keep in mind that 𝜋 is a vector: 𝜋 = 𝜋1, 𝜋2, … , 𝜋𝐿

all other sums add up to 1, 
marginal rule

posterior probability:



EM for HMM,  M-step
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Maximization of 𝑸𝑩 , continued

For a detailed calculation of 𝑄𝐵, it is more intructive to specify concrete
arithmetic expressions for the emission probabilities 𝑃 𝑥𝑖 | 𝜋𝑖 . Here, two
exemplary cases will be presented:

1) Gaussian emission probabilities, which means that state 𝑘 emits
normally distributed observations 𝑥𝑖 with mean 𝜇𝑘 and standard
deviation 𝜎𝑘 . A HMM with such emission probabilities is called
Continuous Density Hidden Markov Model (CDHMM).

2) Multinomially distributed emission probabilities, which means that
state 𝑘 emits one instance of a discrete random variable. The probability
of emitting a particular symbol depends on the state 𝑘.



EM for HMM,  M-step
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Maximization of 𝑸𝑩 , continued, Gaussian emissions

A HMM with Gaussian emission probabilities means that state 𝑘 emits
normally distributed observations 𝑥𝑖 with mean 𝜇𝑘 and standard deviation 𝜎𝑘:

so that we have



EM for HMM,  M-step
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Maximization of 𝑸𝑩 , continued , Gaussian emissions

Now, maximizing 𝑄𝐵 with respect to the emission probabilities means that 
we have to maxmize with respect to the parameters 𝜇𝑘 and 𝜎𝑘 .

This is similar to the common estimation of a Gaussian mean, with the distinction 
that the observations 𝑥𝑖 are weighted by the posterior probabilities that the chain 
is in state 𝑙 at position 𝑖.



EM for HMM,  M-step
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Maximization of 𝑸𝑩 , continued , Gaussian emissions

This is similar to the common estimation of a Gaussian variance, with the 
distinction that the squared residuals are weighted by the posterior probabilities 
that the chain is in state 𝑙 at position 𝑖.



EM for HMM,  M-step
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Maximization of 𝑸𝑩 , continued, Multinomial emissions

A HMM with multinomially distributed emission probabilities means
that state 𝑘 emits an instance of a discrete random variable. The
probability of emitting a particular symbol depends on the state 𝑘.

In general, the multinomial probability mass function reads:  

Here, it is assumed that 𝑁 trials have been made, and each trial can
lead to one of 𝑀 different outcomes, having probabilities 𝑝1, 𝑝2, … , 𝑝𝑀.
The following constraints apply:

and



EM for HMM,  M-step
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Maximization of 𝑸𝑩 , continued, Multinomial emissions

When it comes to emissions from state 𝑘 of a Markov chain, only one symbol is 
emitted from that state, i.e. only one trial is made (𝑁 = 1), so that we have: 

andwith

For our calculations, we have to introduce two additional indices:

o we need to summarize over the positions in the chain →  additional 
index  𝑖 required

o the parameters 𝑝𝑗 are different for each state → additional index  𝑘

required

This leads to the conditional probability:



EM for HMM,  M-step
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Maximization of 𝑸𝑩 , continued, Multinomial emissions

𝑝𝑘𝑗 is the probability that the symbol 𝑗 is released by state 𝑘, and 𝑥𝑖𝑗

indicates if symbol 𝑗 was observed at position 𝑖. Note that in this notation,
𝑥𝑖𝑗 is one for exactly one symbol 𝑗 and zero for all others, which ensures

that σ𝑗 𝑥𝑖𝑗 = 1. Using these expression, we can specify 𝑄𝐵:

with the remaining constraint



EM for HMM,  M-step
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Maximization of 𝑸𝑩 , continued, Multinomial emissions

In order to optimize for 𝑝𝑘𝑗, we establish the Lagrange function:



EM for HMM,  M-step
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Maximization of 𝑸𝑩 , continued, Multinomial emissions

= 1



EM for HMM,  M-step
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3. Maximization of 𝑸𝑪

We have to keep in mind that 𝜋 is a vector: 𝜋 = 𝜋1, 𝜋2, … , 𝜋𝐿

marginal rule

Definition 𝜉 𝑘, 𝑙

the 𝜉𝑖 can be trated as constants 
because they are taken for 𝜃𝑡



EM for HMM,  M-step
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Maximization of 𝑸𝑪

𝑄𝐶 has to be maximized with respect to 𝑎𝑘𝑙. The constraints are σ𝑙 𝑎𝑘𝑙 = 1,
which is valid for every 𝑘. That means that we actually have 𝐾 constraints. 
The Lagrange function is therefore:

𝐾- number of states
𝐿 – length of chain

𝐾 summands

Lagrange function



EM for HMM,  M-step
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Maximization of 𝑸𝑪, continued

Lagrange function



EM for HMM,  M-step
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Maximization of 𝑸𝑪, continued

Using the definitions of 𝜉𝑖 and 𝛾𝑖 , 

we can write:

The estimated transition probability 𝑎𝑚𝑛 is the ratio of the expected number 
of 𝑚 → 𝑛 transitions and the expected number of 𝑚- states in the chain.  



EM for HMM
- Baum-Welch algorithm -
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The Expectation-Maximization algorithm adapted to a Hidden Markov Model
is called Baum-Welch algorithm.
Here comes a summary for the estimation of the model parameters 𝜃, when
Gaussian emission probabilities are assumed:

initial state probabilities

mean of the Gaussian for state 𝑙

variance of the Gaussian for state 𝑙

transition probabilities

The 𝜉𝑖 and 𝛾𝑖 are calculated based on the estimations for the preceding 
iteration step.



EM for HMM
- Baum-Welch algorithm -
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Here comes a summary for the estimation of the model parameters 𝜃, when
multinomial emission probabilities are assumed:

The 𝜉𝑖 and 𝛾𝑖 are calculated based on the estimations for the preceding 
iteration step.

initial state probabilities

transition probabilities

emission probabilities for state k



Baum-Welch iteration (CDHMM)

Uwe Menzel, 2011
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𝑎0𝑙 , 𝑎𝑘𝑙 , 𝜇𝑙 , 𝜎𝑙 random initialisation, or 1st guess

o forward and backward algorithm

𝑎0𝑙 , 𝑎𝑘𝑙 , 𝜇𝑙 , 𝜎𝑙 updated values

𝛼𝑘 𝑖 ; 𝛽𝑘 𝑖 ; 𝑃(𝑥)

o calculate auxiliary variables

𝜉𝑖 𝑘, 𝑙 , 𝛾𝑖 𝑘, 𝑙

o update, see formulas above

stationary?



6. Maximum A Posteriori (MAP) estimation
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Up to now, we have maximised the (log-) likelihood: 

MAP attempts to find the maximum of the posterior probability:

introduce latent variables. 𝑃 𝑥 = Τ𝑃 𝜋, 𝑥 𝑃 𝜋 | 𝑥

conditional expectation ...

additional term: log 𝑃(𝜃)

The denominator 𝑃 𝑥 is not dependent on 𝜃 and can therefore be ignored:

where the definitions of 𝑄 and 𝐻 were used:



Iterate through E-step and M-step until the relative change of 𝜃 gets small.
EM improves the likelihood on each iteration (at least, it cannot decrease).
Suitable priors must be chosen to make MAP not harder than MLE.

MAP - Iteration

Uwe Menzel, 2008

1. Initialise the parameters (1st guess) :

E-step

𝑄 𝜃, 𝜃𝑡 is the conditional expectation 𝐸𝜋 | 𝑥, 𝜃𝑡
of the log-likelihood, 

𝑃 𝜋, 𝑥 | 𝜃 ,  with respect to 𝜋 given the observation 𝑥 and the known 
parameters (model) 𝜃𝑡

2. Calculate the expectation (Q-function):

3. Find the parameters which maximize the expectation:

M-step, note the log 𝑃 𝜃

return to E-step or terminate if 𝜃𝑡 is stationary



Appendix

Hidden Markov Models
Expectation-Maximisation (EM) Estimation

Maximum-A-Posteriori (MAP) Estimation

Uwe Menzel, 2008
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The Jensen inequality

0 ≤ 𝑡 ≤ 1

𝑥1 𝑥2𝑡𝑥1 + 1 − 𝑡 𝑥2

𝑓 𝑥1

𝑓 𝑥2
Convex functions:

𝑥1 𝑥2𝑡𝑥1 + 1 − 𝑡 𝑥2

𝑓 𝑥1

𝑓 𝑥2

Concave functions: 0 ≤ 𝑡 ≤ 1

www.matstat.org



The Jensen inequality

www.matstat.org

This is not more than a hint. An excellent presentation of Jensen’s (and other)
inequalities is by Dragos Hrimiuc (University of Alberta) can be found here:
https://www.math.ualberta.ca/pi/issue4/ (“Pi in the sky” December 2001
issue).

Convex functions: Concave functions:

Convex functions: Concave functions:



Extrema with constraints
- Method of Lagrange multipliers -

www.matstat.org

Aim: Find the 𝒙 that maximizes 𝑓 𝒙 with the contraint that 𝑔 𝒙 = 0
(𝒙 might be a vector).

Construct Lagrange function:   ℒ 𝑥, 𝜆 = 𝑓 𝑥 − 𝜆 ∙ 𝑔 𝑥
The parameter 𝜆 is called Lagrange multiplier.

Solve  
𝜕ℒ

𝜕𝑥
= 0 and 

𝜕ℒ

𝜕𝜆
= 0 (a system of equations). The solution is an extremum 

of the function 𝑓under the constraint 𝑔. 

Example: ;   constraintFind extrema of 


