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Multi-dimensional Gaussians
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o Very similar to the 1-D case, for details see part II

o 𝑑 = dimension of the sample space

o 𝝁𝒌:  vector of means (of length 𝑑 )

o 𝒙𝒊: one observation, vector of length 𝑑

o 𝜮𝒌: covariance matrix ( 𝑑 × 𝑑 matrix):

In two dimensions, this translates to:

correlation coefficient



Two-step experiment 

Assume we have K d-dimensional Gaussians with densities 𝑓𝑘 𝒙 | 𝝁𝒌, 𝜮𝒌 ,
where 𝑘 = 1, 2, … , 𝐾 . We carry out the same two-step experiment as we did
in the one-dimensional case (see part II):

1. Choose a Gaussian 𝑓𝑘 randomly with some probability 𝛼𝑘 . This can be
described by a multinomially distributed random variable 𝑍 with sample
space Ω𝑍 = 1, 2, … , 𝐾 and probability mass function 𝑃 𝑍 = 𝑘 = 𝛼𝑘 . The
𝛼𝑘 are constrained by σ 𝛼𝑘 = 1 and 𝛼𝑘 > 0 for all k.

2. Generate a sample 𝒙 from the above chosen distribution 𝑓𝑘 . The vector 𝒙 is
an observation of a d-dimensional normally distributed random variable
𝑿 with parameters 𝝁𝒌 and 𝜮𝒌, i.e. 𝑿 ∼ 𝑀𝑉𝑁 𝝁𝒌, 𝜮𝒌 .

The figure on the next page illustrates this experiment: In step 1, cluster 3 was
chosen. Then the vector 𝒙 = 𝑥1, 𝑥2 is generated from the distribution
𝑿 ~ 𝑀𝑉𝑁 𝝁𝟑, 𝜮𝟑 .
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𝑓 𝒙 | 𝝁𝟏, 𝜮𝟏

𝑓 𝒙 | 𝝁𝟑, 𝜮𝟑

𝑓 𝒙 | 𝝁𝟐, 𝜮𝟐

𝑥1

𝑥2

Contour plot for 2-D Gaussian mixture
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where 𝑓𝑘 is the probability density function for a 𝑑-dimensional Gaussian:

Probability Density Function for multidimensional 
Gaussian

The experiment includes a discrete (𝑍) and a d-dimensional continuous (𝑿) 
random variable. The (mixed) joint density of 𝑿 and 𝒁 can be written:
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𝑓𝑋|𝑍: conditional 

probability

Here, 𝜮𝒌 is the determinant of the covariance matrix of the kth component 
(cluster). 



Uwe Menzel, 2018

because and

See the appendix for a derivation of the two-dimensional expressions.

In the 2-D case, the joint density of 𝐱 = 𝑥, 𝑦 simplifies to

Probability Density Function for two-dimensional 
Gaussian



Gaussian mixture 

We have to find parameters 𝜽 that maximize 𝑓𝑋 𝒙 | 𝜽 . As in the 1-D case, an
expression for the density 𝑓𝑋 𝒙 | 𝜽 that incorporates the latent variables 𝑍
can be found by using the law of total probability:

𝛼𝑘𝑓𝑘 𝒙 | 𝜇𝑘 , Σ𝑘

www.matstat.org

where 𝐾 is the number of clusters.

The density 𝑓𝑋 can be seen as a superposition of multiple probability density 
functions (Gaussians):



Maximum Likelihood for a Gaussian mixture 
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Note that each 𝒙𝒊 is a 𝑑-dimensional vector here. We aim at calculating the 𝜽
that maximizes 𝐿 𝜽 :

If we have multiple independent observations 𝒙 = 𝒙1, 𝒙2, … , 𝒙𝑁
𝑇 , the likelihood is 

the product of the density for the individual observations: 

i.e. we search for the parameter (vector) 𝜽 that makes the observed data most 
likely. Often, it is more convenient to maximize the logarithm of 𝐿 𝜽 :



Mixture of Gaussians: E-step

2. E-step: calculate 𝑃 𝑍𝑖 = 𝑘 | 𝑿𝒊 = 𝒙𝒊, 𝜽𝑡 . 

This is the probability that 𝑍𝑖 is equal to k, i.e. the probability that an observation 𝒙𝒊

originates from the kth Gaussian, given that observation (𝒙𝒊) and all parameters
𝜽𝒕 = 𝛼𝑘

𝑡 , 𝝁𝑘
𝑡 , 𝜮𝑘

𝑡 . Since the parameters can be considered as given (we made a 1st

guess) , we know the exact positions and shapes of the 𝑑-dimensional Gaussians
and it’s superposition, as shown in the figure for 𝑑 = 2.

1. Initialize:   𝜽𝑡 = 1st guess for the set of parameters
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Mixture of Gaussians: E-step

2. E-step: calculate 𝑃 𝑍𝑖 = 𝑘 | 𝑿 = 𝒙𝒊, 𝜽𝑡 . 

Knowledge of 𝒙𝒊 and 𝜽𝒕 enables us to calculate the conditional probability using 
Bayes theorem :

The last ratio is labelled 𝜔𝑖𝑘 and often named ”degree of membership” (of
observation 𝑥𝑖 to component 𝑘). The 𝜔𝑖𝑘 are known numbers since they are
calculated based on the known 𝜽𝒕 = 𝛼𝑘

𝑡 , 𝜇𝑘
𝑡 , 𝜎𝑘

𝑡 .
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Degree of membership: 𝜔𝑖𝑘

Illustration of the 𝜔𝑖𝑘 (dashed lines jittered around 𝑥𝑖 for better visibility) 

𝛼1
𝑡 ∙ 𝑓 𝒙 | 𝝁𝟏

𝒕 , 𝜮𝟏
𝒕

𝛼2
𝑡 ∙ 𝑓 𝒙 | 𝝁𝟐

𝒕 , 𝜮𝟐
𝒕

𝛼1
𝑡 ∙ 𝑓 𝒙 | 𝝁𝟏

𝒕 , 𝜮𝟏
𝒕

+ 𝛼2
𝑡 ∙ 𝑓 𝒙 | 𝝁𝟐

𝒕 , 𝜮𝟐
𝒕

𝑥𝑖

L

𝑙1

𝑙2

𝜔𝑖1 =
𝑙1

𝐿

𝜔𝑖2 =
𝑙2

𝐿

𝑙1 + 𝑙2 = L

It is not easy to illustrate the geometric meaning of the 𝜔𝑖𝑘 in the multi-
dimesional case. In two dimensions, having two clusters, we might see the
figure below as a cross section perpendicular to the 𝑥 − 𝑦 plane.
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Completion of the E-step
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unknown parameters (depending on 𝜽)

𝜔𝑖𝑘 known (depending on 𝜽𝑡)

The expression 𝑄1 has to be maximized for the unknown 𝛼𝑘 , 𝜇𝑘 , 𝜎𝑘 → M-step.

It remains to calculate:

𝜔𝑖𝑘

(mixed) joint probability distribution



Mixture of multivariate Gaussians: M-step
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𝑄1 has to be maximized for the unknown 𝛼𝑘 , 𝝁𝒌, 𝜮𝒌

The parameters 𝜮𝒌, 𝝁𝒌 and 𝛼𝑘 in the curly brackets are the actual variables 𝑄1must 
be maximized for, while the 𝜔𝑖𝑘 contain only variables that have been specified by 
first guess, so that 𝜔𝑖𝑘 can be treated as a constant in this expression. 



Mixture of Gaussians: M-step
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Maximization of 𝑸𝟏 with regard to 𝝁𝒎:
(here, we have ignored the term −

𝑑

2
∙ log 2𝜋

since it doesn’t depend on any parameter)

(see Appendix for the last step)

෍



Mixture of Gaussians: M-step
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(Σ is positive definite, covariance)

The new means are weighted means of the 𝑥𝑖 (weighted with the degree of
membership of each datapoint). This can be compared with the ML estimation

of the mean for a single Gaussian: 𝜇 =
1

𝑁
∙ σ 𝑥𝑖

This is similar to the 1-D case where we had



Mixture of Gaussians: M-step

Maximization of 𝑸𝟏 with respect to 𝚺𝒎:

Instead of deriving for 𝜮𝒎 , we derive for 𝜮𝒎
−1. This will automatically

lead to an expression for 𝜮𝒎. This strategy was already presented by
Xavier Bourret Sicotte1.

1 https://stats.stackexchange.com/questions/351549/maximum-likelihood-estimators-multivariate-gaussian

see Appendix

We obtain:



Mixture of Gaussians: M-step

The new estimate for the covariance matrix 𝜮𝒎 is a matrix where each element
is a weighted mean of the squared distances between datapoints and mean 𝝁𝒎

(weighted with the degree of membership of each datapoint). Thsi can be
compared with the one-dimensional case, where we obtained for the variance:
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Mixture of Gaussians: M-step
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Maximization of 𝑸𝟏 with respect to 𝜶𝒎:

This has to be solved with the 
constraint σ𝑘 𝛼𝑘 = 1

This expression is the same as for the one-dimensional case, so that we 
can directly adopt the solution (see part II):

Again, it is and



Iteration
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Now, we set 𝜽𝑡 = 𝜽 and repeat the E step. This continues until convergence is 
reached:

Init: 𝜽𝒕 = 𝛼𝑘
𝑡 , 𝝁𝒌

𝒕 , 𝜮𝒌
𝒕

E-step: 𝜔𝑖𝑘

M-step: 𝜽 = 𝝁𝒌, 𝜮𝒌, 𝛼𝑘

𝜃−𝜃𝑡

𝜃𝑡
< 𝜀 ? yesno stop



Summary of EM for multidimensional Gaussian 
mixture 
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M-step:

E-step:

Initialization:   1st guess 𝜽𝒕 = 𝛼𝑘
𝑡 , 𝝁𝒌

𝒕 , 𝜮𝒌
𝒕

Iterate between E- and M-step until convergence, i.e. until  
𝜃−𝜃𝑡

𝜃𝑡
< 𝜀 .

Alternatively, check convergence of the likelihood. 



R-script, EM for 2-D Gaussian mixture 
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o In the R-code provided, we generate sample points for a two-dimensional
Gaussian mixture by modelling the two-step experiment described above
(grey points in the figure below)

o Starting with these data, we calculate the means, covariance matrices, and
mixture weights using the EM algorithm presented here. The solution is
indicated by the green contour lines.



Appendix 

The Expectation-Maximization algorithm III
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uwe.menzel@slu.se ; uwe.menzel@matstat.de
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Probability density for the 2-D Gaussian

Probability density function for the d-dimensional case:

Probability density function for the 2-dimensional case:

Determinat of the covariance matrix for the 2-D case:
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Inverse of the 2D covariance matrix 

A general expression for the inverse of a 2-D matrix is:

Hence, the inverse of the 2-D covariance matrix is:

(index 𝒌 suppressd to simplify notation)

We still need the exponent 

Note:

𝒙 − 𝝁 is a column vector: 2x1

𝒙 − 𝝁 =
𝑥 − 𝜇𝑥

𝑦 − 𝜇𝑦

𝒙 − 𝝁 𝑇 is a row vector: 1x2

𝒙 − 𝝁 𝑻 = 𝑥 − 𝜇𝑥 , 𝑦 − 𝜇𝑦
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Exponent of the 2D probability density function 

It remains to multiply this with 𝒙 − 𝝁 𝑇 from the left side:



Derivative of the quadratic form 𝒙𝑻𝑨𝒙
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If the matrix 𝑨 is symmetric (𝑨𝑇 = 𝑨) and independent of the vector 𝒂, the 
following is generally valid:

Therefore: 

𝒂𝑇 𝒂𝑨𝒂
𝑨 𝒂

Using the chain rule, we get:

Finally, we get:

𝑰 is the identity matrix



Derivation of 𝑄1 for Σ𝑚
−1
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Instead of deriving w.r.t. Σ𝑚

we derive w.r.t. Σ𝑚
−1, so that we have to calculate : 



Derivation of 𝑄1 for Σ𝑚
−1
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Furthermore, if A is symmetric, we have:

Calculation of 
𝜮𝒎 is the 

determinat of 𝜮𝒎

Since we can write

(∗): see ”The Matrix Cookbook” by Petersen & Pedersen
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf)

(∗)

so that



Derivation of 𝑄1 for Σ𝑚
−1
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(∗) see “The Matrix Cookbook”  by Petersen and Pedersen, eqn. (72)
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

Calculation of 

Using this, we get:

In general we have : (∗)



Derivation of 𝑄1 for Σ𝑚
−1

In summary, we obtained

so that the final result becomes
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