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Summary of the General EM scheme

2. E-step: calculate 𝑃 𝑍 = 𝑘 | 𝑋 = 𝑥𝑖 , 𝜃𝑡 and then 

3. M-step: update the estimate of the model parameters: 𝜃𝑡 → 𝜃𝑡+1

1. Initialize:   𝜃𝑡 = 1st guess for the parameter vector 𝜃

o 𝑋 = 𝑥1, 𝑥2 , … , 𝑥𝑁 are the genuine observations

o Z = 𝑧1, 𝑧2 , … , 𝑧𝐾 are the latent variables 

Iterate through steps 2 and 3 until convergence, i.e. until 𝜃𝑡+1 − 𝜃𝑡 is small
enough. The calculated 𝜃𝑡 is often a global maximum, but can also be a
local maximum or a saddle point.
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𝑓 𝑥 | 𝜇1, 𝜎1

𝑓 𝑥 | 𝜇1, 𝜎1

𝑓 𝑥 | 𝜇1, 𝜎1

𝑥

Gaussian mixture

Assume we have K normal distributions (Gaussians) with densities 𝑓𝑘 𝑥 | 𝜇𝑘 , 𝜎𝑘 ,
𝑘 = 1, 2, … , 𝐾 . The parameters 𝜇𝑘 and 𝜎𝑘 are the mean and the standard deviation
of the kth Gaussian. We carry out a two-step experiment:

1. Choose a Gaussian 𝑓𝑘 randomly with some probability 𝛼𝑘 . This can be described

by a multinomially distributed random variable 𝑍 ~ 𝑀𝑢𝑙𝑡 𝛼1, 𝛼2, … , 𝛼𝐾 with

sample space Ω𝑍 = 1, 2, … , 𝐾 and probability mass function 𝑃 𝑍 = 𝑘 = 𝛼𝑘 . We
have σ 𝛼𝑘 = 1 and 𝛼𝑘 > 0 for all k.

2. Generate a sample 𝑥 from the above chosen distribution 𝑓𝑘 . Thus, 𝑥 is an
observation of a normally distributed random variable 𝑋 with parameters 𝜇𝑘 and
𝜎𝑘, i.e. 𝑋 ∼ 𝑁 𝜇𝑘 , 𝜎𝑘 .
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where 𝑓𝑘 is a Gaussian:

Maximum Likelihood for a Gaussian mixture 

The experiment includes a discrete (𝑍) and a continuous (𝑋) random variable. 
The (mixed) joint density of 𝑿 and 𝒁 can be written:

In practice, we often only have the observation 𝑥, without knowing from which
Gaussian 𝑥 was emitted, i.e. the variable Z is not observed (hidden, latent). The
Maximum-Likelihood (ML) method must maximize with respect to the real
observations, i.e. we have to find parameters 𝜽 that maximize 𝑓𝑋 𝑥 | 𝜽 , not
𝑓𝑋,𝑍 𝑥, 𝑍 | 𝜽 . Here, the vector 𝜽 represents all parameters of the model: 𝜽 =

𝛼𝑘 , 𝜇𝑘 , 𝜎𝑘 . An expression for the density 𝑓𝑋 𝑥 | 𝜽 that incorporates the latent
variables 𝑍 can be obtained by applying the law of total probability:

𝛼𝑘𝑓𝑘 𝑥 | 𝜇𝑘 , 𝜎𝑘
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𝑓𝑋|𝑍: conditional probability



Maximum Likelihood for a Gaussian mixture 

The density 𝑓𝑋 can be seen as a superposition of multiple probability density 
functions (Gaussians):
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Note that the likelihood is considered as a function of the vector 𝜽. The task of 
ML is to calculate the 𝜽 that maximizes 𝐿 𝜽 :

If we have multiple independent observations 𝒙 = 𝑥1, 𝑥2, … , 𝑥𝑁 , the likelihood is 
the product of the density for the individual observations: 

i.e. we search for the parameter (vector) 𝜽 that makes the observed data most 
likely. Often, it is more convenient to maximize the logarithm of 𝐿 𝜽 :



𝑓 𝑥 | 𝜇1, 𝜎1

𝑓 𝑥 | 𝜇2, 𝜎2

𝑓 𝑥 | 𝜃

𝑥2𝑥1 𝑥4𝑥3 𝑥6𝑥5

𝛼 = 0.25

Mixture of Two Gaussians

Let’s first look at a mixture of two Gaussians:

We have 5 parameters to estimate: 𝜽 = (𝛼, 𝜇1, 𝜎1, 𝜇2, 𝜎2) because 𝛼1 + 𝛼2 = 1
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Mixture of Two Gaussians

Solving these equations causes problems because the log of a sum is 
inconvenient to handle numerically. 
(With just one component, there was no problem → see appendix)

Uwe Menzel, 2018

Having a mixture of two Gaussians, the likelihood and log-likelihood in the 
presence of N independent observations for 𝑿 read:

In order to maximize the log-likelihood, we have to solve the equations 



𝑓 𝑥 | 𝜇1, 𝜎1

𝑓 𝑥 | 𝜇2, 𝜎2

𝑥2𝑥1 𝑥4𝑥3 𝑥6𝑥5

Introduction of latent variables

o If it was known for each observation 𝑥𝑖 from which Gaussian it was emitted, we
could solve the problem easily by just estimating the 𝜇𝑘 and 𝜎𝑘 for each compo-
nent separately (as shown in the appendix).

o Therefore, if the parent components of the observations are unobserved, it
seems convenient to artificially introduce a latent variable 𝑍𝑖 for each 𝑥𝑖 , so that
𝑍𝑖 assigns 𝑥𝑖 to one of the components. Hence, the sample space of each 𝑍𝑖 is
Ω𝑧𝑖

= 1, 2, … , 𝐾 .

o The introduction of the 𝑍𝑖 enables the EM scheme for parameter estimation →
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For example, if we knew 
that 𝑥1, 𝑥2, 𝑥3 belonged 
to 𝑓 𝑥 | 𝜇1, 𝜎1 , we could 
estimate 𝜇1and 𝜎1on the 
basis of these 3 points, 
which is easy to achieve.



Mixture of Gaussians: E-step

2. E-step: calculate 𝑃 𝑍𝑖 = 𝑘 | 𝑋𝑖 = 𝑥𝑖 , 𝜃𝑡 . 

This is the probability that 𝑍𝑖 is equal to k, i.e. the probability that 𝑥𝑖 originates
from the kth Gaussian, given the observation 𝑥𝑖 and all parameters 𝜽𝒕 = 𝛼𝑘

𝑡 , 𝜇𝑘
𝑡 , 𝜎𝑘

𝑡 .
Since the parameters can be considered given, we know the exact positions and
shapes of the Gaussians and it’s superposition, as shown in the figure.

1. Initialize:   𝜃𝑡 = 1st guess for the set of parameters

𝑓 𝑥 | 𝜇1
𝑡 , 𝜎1

𝑡

𝑓 𝑥 | 𝜇2
𝑡 , 𝜎2

𝑡

𝑓 𝑥 | 𝜃𝑡

𝑥2𝑥1 𝑥4𝑥3 𝑥6𝑥5

𝛼𝑡 = 0.25www.matstat.org



Mixture of Gaussians: E-step

2. E-step: calculate 𝑃 𝑍𝑖 = 𝑘 | 𝑋 = 𝑥𝑖 , 𝜃𝑡 . 

Knowledge of 𝑥𝑖 and 𝜽𝒕 enables us to calculate the conditional probability using 
Bayes theorem :

The last ratio is labelled 𝜔𝑖𝑘 and often named ”degree of membership” (of
observation 𝑥𝑖 to component 𝑘). The 𝜔𝑖𝑘 are known numbers since they are
calculated based on the known 𝜽𝒕 = 𝛼𝑘

𝑡 , 𝜇𝑘
𝑡 , 𝜎𝑘

𝑡 .
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Degree of membership: 𝜔𝑖𝑘

Illustration of the 𝜔𝑖𝑘 (dashed lines jittered around 𝑥𝑖 for better visibility) 

𝛼1
𝑡 ∙ 𝑓 𝑥 | 𝜇1

𝑡 , 𝜎1
𝑡

𝛼2
𝑡 ∙ 𝑓 𝑥 | 𝜇2

𝑡 , 𝜎2
𝑡

𝛼1
𝑡 ∙ 𝑓 𝑥 | 𝜇1

𝑡 , 𝜎1
𝑡

+ 𝛼2
𝑡 ∙ 𝑓 𝑥 | 𝜇2

𝑡 , 𝜎2
𝑡

𝑥𝑖

L

𝑙1

𝑙2

𝜔𝑖1 =
𝑙1

𝐿

𝜔𝑖2 =
𝑙2

𝐿

𝑙1 + 𝑙2 = L
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Completion of the E-step
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unknown parameters (depending on 𝜽)

𝜔𝑖𝑘 known (depending on 𝜽𝑡)

The expression 𝑄1 has to be maximized for the unknown 𝛼𝑘 , 𝜇𝑘 , 𝜎𝑘 → M-step.

It remains to calculate:

𝜔𝑖𝑘

(mixed) joint probability distribution



Mixture of Gaussians: M-step
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𝑄1 has to be maximized for the unknown 𝛼𝑘 , 𝜇𝑘 , 𝜎𝑘



Mixture of Gaussians: M-step
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Maximization of 𝑸𝟏 with regard to 𝝁𝒎:

update of 𝜇𝑚

The new means are weighted means of the 𝑥𝑖 (weighted with the degree of
membership of each datapoint). This can be compared with the ML estimation

of the mean for a single Gaussian: 𝜇 =
1

𝑁
∙ σ 𝑥𝑖



Mixture of Gaussians: M-step
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Maximization of 𝑸𝟏 with respect to 𝝈𝒎:

The new estimates for the variances 𝜎𝑚
2 are weighted means of the squared

distances between datapoints and mean 𝜇𝑚 (weighted with the degree of
membership of each datapoint). This can be compared with the ML estimation of

the variance for a single Gaussian: 𝜎2 =
1

𝑁
σ 𝑥𝑖 − 𝜇 2 (if not corrected for bias).



Mixture of Gaussians: M-step
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Maximization of 𝑸𝟏 with respect to 𝜶𝒎:

This has to be solved with the 
constraint σ𝑘 𝛼𝑘 = 1

𝜆 : Lagrange multiplier

(only the part of 𝑄1 depending on 𝛼𝑘 was included, other terms disappear by derivation)



Mixture of Gaussians: M-step
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The Lagrange multiplier 𝜆 can be determined using:

=1

it remains to find 𝜆



Iteration
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Now, we set 𝜽𝑡 = 𝜽 and repeat the E step. This continues until convergence is 
reached:

Init: 𝜽𝒕 = 𝛼𝑘
𝑡 , 𝜇𝑘

𝑡 , 𝜎𝑘
𝑡

E-step: 𝜔𝑖𝑘

M-step: 𝜽 = 𝜇𝑘 , 𝜎𝑘 , 𝛼𝑘

𝜃−𝜃𝑡

𝜃𝑡
< 𝜀 ? yesno stop



Summary of EM for 1-D Gaussian mixture 
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M-step:

E-step:

Initialization:   1st guess 𝜽𝒕 = 𝛼𝑘
𝑡 , 𝜇𝑘

𝑡 , 𝜎𝑘
𝑡

Iterate between E- and M-step until convergence, i.e. until  
𝜃−𝜃𝑡

𝜃𝑡
< 𝜀 .

Alternatively, check convergence of the likelihood. 



Appendix 

The Expectation-Maximization algorithm II

Uwe Menzel, 2018

uwe.menzel@matstat.de

www.matstat.org



ML for a single Gaussian

Maximum-likelihood estimate for 𝜇, 𝜎 for a single Gaussian:

Likelihood for N independent samples

Log-likelihood
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ML for a single Gaussian

(We know that we have to replace 𝑁 by  𝑁 − 1 in the last expression in order to get 
an unbiased estimation of the variance)
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