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Expectation–Maximization 

o The Expectation–Maximization (EM) algorithm is an iterative scheme
for calculation of maximum likelihood (ML) or maximum a posteriori
(MAP) estimates of parameters in statistical models.

o The EM scheme includes so-called latent (hidden) variables, which
might be missing values or data that cannot be observed on principle.
Very often, the latent variables are just artificially incorporated into the
model in order to facilitate an EM scheme.

o The EM iteratetively alternates between an Expectation step and a
Maximization step.

o The EM algorithm is widely applied in different fields of statistical
modeling.

o Here, the general scheme of EM is introduced. In following lectures,
specific algorithms utilizing this general scheme will be presented.
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Maximum Likelihood

To obtain a Maximum Likelihood (ML) estimation for 𝜃, we are looking for the 𝜃
that makes the observed data most likely, i. e. we attempt to calculate

Here, we develop the EM scheme for the case that the observations derive from
a continuous random variable 𝑿, and the latent variables 𝒁 are discrete with an
integer sample space. This setup occurs frequently, e. g. when dealing with
Gaussian mixtures. The N independent observations from the variable 𝑋 can be
denoted by 𝒙 = 𝑥1, 𝑥2 , … , 𝑥𝑁 . The statistical model is established in form of a
probability density function (PDF) 𝑓𝑋 𝒙 | 𝜽 for 𝑿 which is parameterized on a
set of parameters condensed in the vector 𝜽. The likelihood is then

Instead of maximizing 𝐿 𝜃 , we can also maximize 𝑙 𝜃 = log 𝐿 𝜃 , since both
functions have their maxima at the same place:

(3)

(2)

(1)
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Introduction of latent variables

We can introduce into the model latent variables Z by taking advantage of the 
marginal rule:

where 𝑓𝑋,𝑍 denotes the joint distribution of 𝑋 and 𝑍. As already noted above, we

have assumed that 𝑍 is a discrete random variable with a sample space that
includes the integers from 1 to K, i.e. 𝑍 ∈ 1, 2, … , 𝐾 . If 𝑍 is continuous, the sum
has to be replaced by an integral.
It seems as if we have made the problem even more complicated by introducing
unknown latent variables 𝑍, especially in view of the fact that we have to maxmize
𝑝 𝑋 | 𝜃 , not 𝑝 𝑋, 𝑍 | 𝜃 , i.e. we maximize only with respect to the observed data.
However, later we’ll see by means of examples that it makes sense to include the
latent variables into the model if they are chosen in a clever way.
By using the above expression (eqn. 4), the equation for the log-likelihood (eqn. 3)
transformes to:

(4)

:

(5)
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Conditional probability for the latent variables

EM attempts to find a ML estimation for 𝜃 in an iterative manner. Let 𝜃𝑡 be a first
guess of the parameters (or the estimates obtained in the precedent iteration
step) so that 𝜃𝑡 can be regarded as known. We can rewrite eqn. (5) by expanding
each term within the 𝑘-sum with the conditional probability of the latent
variables 𝑍, given the observations 𝑥𝑖 and the 𝜃𝑡 , i.e. we can expand with
𝑃 𝑍 = 𝑘 | 𝑋 = 𝑥𝑖 , 𝜃𝑡 to obtain:

(6)
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Remark regarding the notation used: 

Because 𝑋 is a continuous variable, we write 𝑓𝑋,𝑍 𝑥𝑖 , 𝑍 = 𝑘 to make clear that

this is a probability density.
On the other hand, we use the notation 𝑃 𝑍 = 𝑘 | 𝑋 = 𝑥𝑖 because 𝑍 is discrete.
Depending on the nature of the observed and latent variables, the notation
should be adapated.



Lower bound for the log-likelihood

Note that the 𝑃 𝑍 = 𝑘 | 𝑋 = 𝑥𝑖 , 𝜃𝑡 sum up to 1 when summed over 𝑘, and are all
non-negative, so that we can apply Jensen’s inequality to the log of the k-sum. The
log is a concave function, so that Jensen’s inequality reads:

(see a little bit more  about Jensen’s inequality in the appendix) 
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𝑎𝑘 𝐵𝑘

if 

This can be used to find a lower limit of 𝑙 𝜃 :

(8)

𝑎𝑘

𝐵𝑘



Lower bound for the log-likelihood

By using Jensen’s inequality, we have identified a lower bound for 𝑙(𝜃), which is 
often called 𝑄 𝜃, 𝜃𝑡 :

(9)

where

The E-step involves the calculation of the quantities  𝑃 𝑍 = 𝑘 | 𝑋 = 𝑥𝑖 , 𝜃𝑡 and 
𝑄 𝜃, 𝜃𝑡 . In the M-step, the quantity 𝑄 is maximized w.r.t. 𝜃, in order to find an 
update of 𝜃:

(10)

(11)

Eqn. (9) is valid for all 𝜃, i.e. eqn (9) implies:
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𝑄 𝜃𝑡 , 𝜃𝑡 = 𝑙 𝜃𝑡

It is important to know what 𝑄 𝜃, 𝜃𝑡 becomes when 𝜃 = 𝜃𝑡:

= 1

independent of k

see below

compare eqn. (3) (12)

Above, we have used the general relation (Z discrete, X continuous):

leading to



Simplifying the M-step

The M-step can be simplified by splitting the log of the ratio: 

The 2nd term in the difference does not depend on 𝜃. Therefore, it is sufficient 
to maximize 

(13)
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This can be interpreted as the conditional expectation 𝐸𝑍|𝑋=𝑥𝑖
of the log-

likelihood of the complete data 𝑋, 𝑍 . 



Combining these equations we can conclude that

i.e. the EM scheme improves the ML on each iteration step (at least, the log-
likelihood cannot decrease in any iteration). That makes EM appealing for
practical applications.

Each iteration improves the log-likelihood

Zhu, eqn. (16)

(9)

We have now obtained several important equations:

(12) Zhu, eqn. (17)

(11)

which implies
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Moreover, it is

because 𝜃𝑡+1maximizes the quantity 𝑄 𝜃, 𝜃𝑡 :

(M-step)

(14)



Each iteration improves the log-likelihood

For 𝜃 = 𝜃𝑡 , we have 𝑙 𝜃𝑡 = 𝑄 𝜃𝑡 , 𝜃𝑡 . Then, 𝜃𝑡+1 is calculated to be the maximum
of 𝑄 𝜃, 𝜃𝑡 . The new 𝑄 𝜃, 𝜃𝑡+1 is also a lower bound of 𝑙 𝜃 , and the equation
𝑙 𝜃𝑡+1 = 𝑄 𝜃𝑡+1, 𝜃𝑡+1 applies. Next, the maximum of 𝑄 𝜃𝑡 , 𝜃𝑡+1 is calculated in
order to get 𝜃𝑡+2, etc. EM ensures that the log-likelihood 𝑙 𝜃 cannot decrease on
any iteration. Iterations continue until convergence is reached, i.e. until 𝜃𝑡+1 − 𝜃𝑡

is small enough.

For all 𝜃, and for all 𝑡, 
we have 𝑙 𝜃 ≥ 𝑄 𝜃, 𝜃𝑡

𝑄 𝜃, 𝜃𝑡

𝑄 𝜃, 𝜃𝑡+1

𝑙 𝜃

𝜃

𝑙 𝜃 , 𝑄 𝜃, 𝜃𝑡

𝜃𝑡 𝜃𝑡+1 𝜃𝑡+2
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Summary of the EM meta-algorithm

2. E-step: calculate 𝑃 𝑍 = 𝑘 | 𝑋 = 𝑥𝑖 , 𝜃𝑡 and then 

3. M-step: update the estimate of the model parameters: 𝜃𝑡 → 𝜃𝑡+1

1. Initialize:   𝜃𝑡 = 1st guess for the parameter set 𝜃

o 𝑋 = 𝑥1, 𝑥2 , … , 𝑥𝑁 are the genuine observations

o Z = 𝑧1, 𝑧2 , … , 𝑧𝐾 are the latent variables 

Iterate through steps 2 and 3 until convergence, i.e. until 𝜃𝑡+1 − 𝜃𝑡 is small
(or the difference of the likelihoods is small).

(10)
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Convergence of the EM method

o We have seen that the (log-) likelihood cannot decrease at any iteration
step of the EM scheme.

o The scheme guarantees that a stationary point of the likelihood is found.

o This point is not nessecarily is a global maximum of 𝐿 𝜃 , but can also
be a local maximum or a saddle point.

What have we won by using EM?

Instead of calculating the 𝜃 that maximizes  

see eqn. (10)

we have to find the 𝜃 which maximizes the expression 𝑄1 𝜃, 𝜃𝑡 on each iteration: 

At a first glance, this doesn’t seem to be much of an advantage. However, as we’ll 
see in the examples, solving eqn. (10) can be much easier than maximizing 𝑙 𝜃
directly, if the latent variables 𝑍 are chosen in a clever manner.
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Appendix 

The Expectation Maximization Algorithm
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The Jensen inequality

0 ≤ 𝑡 ≤ 1

𝑥1 𝑥2𝑡𝑥1 + 1 − 𝑡 𝑥2

𝑓 𝑥1

𝑓 𝑥2
Convex functions:

𝑥1 𝑥2𝑡𝑥1 + 1 − 𝑡 𝑥2

𝑓 𝑥1

𝑓 𝑥2

Concave functions: 0 ≤ 𝑡 ≤ 1
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The Jensen inequality
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This is not more than a hint. An excellent presentation of Jensen’s (and other)
inequalities is by Dragos Hrimiuc (University of Alberta) and is linked here:
https://www.math.ualberta.ca/pi/issue4/ (“Pi in the sky” December 2001
issue).

Convex functions: Concave functions:

Convex functions: Concave functions:


