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Constructing Decision Trees
- A trivial example -
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o Finding the right criteria (questions) to subdivide a dataset into classes

o In the training dataset, the classes (attributes) must be known. 

o Example:

o Healthy, Mild infection, Severe infection

o The expression values of a single gene are sufficient to classify the patients:

# gene1 class

1 6 H(ealthy)

2 5 H

3 4 M(ild)

4 3 M

5 1 S(evere)

6 2 S



uwe.menzel@matstat.org

# gene1 class

1 6 H(ealthy)

2 5 H

3 4 M(ild)

4 3 M

5 1 S(evere)

6 2 S

gene1 expression?

Healthy
𝐻 = 2; 𝑀 = 0; 𝑆 = 0

Mild
𝐻 = 0; 𝑀 = 2; 𝑆 = 0

Severe
𝐻 = 0; 𝑀 = 0; 𝑆 = 2

≥ 𝟓 ≤ 𝟐

o A new patient with unknown class ("test set") could now easily be classified.
o But: In most of the cases, constructing a tree is far more complicated.



Constructing Decision Trees
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o Finding the right criteria (questions) to subdivide a dataset into classes

o In the training dataset, the classes (attributes) must be known: 

o Healthy, Mild infection, Severe infection

o The expression values of gene1 and gene2 are sufficient to classify the 
patients, while the categorical variable "smoking" cannot be used for 
classification:

# gene1 gene2 smoking class

1 6 2 yes H(ealthy)

2 5 2 no H

3 1 5 yes M(ild)

4 2 4 no M

5 1 2 yes S(evere)

6 1 3 no S



Constructing Decision Trees
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# gene1 gene2 smoking class

1 6 2 yes H(ealthy)

2 5 2 no H

3 1 5 yes M(ild)

4 2 4 no M

5 1 2 yes S(evere)

6 1 3 no S

o if gene1 ≥ 5 → H

o gene1 is not sufficient to classify for mild and severe infection, we need more:

o if gene1 < 5 and gene2 ≥ 4 → M

o if gene1 < 5 and gene2 < 4 → S ... we need two questions here! 



Constructing Decision Trees
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o gene1 ≥ 5 → H 
o gene1 < 5 and gene2 ≥ 4 → M
o gene1 < 5 and gene2 < 4 → S

gene1 ?

Healthy
𝐻 = 2; 𝑀 = 0; 𝑆 = 0

Mild
𝐻 = 0; 𝑀 = 2; 𝑆 = 0

Severe
𝐻 = 0; 𝑀 = 0; 𝑆 = 2

≥ 𝟓

gene2 ?

< 𝟓

≥ 𝟒 < 𝟒

Often, samples cannot be classified perfectly, i.e. the leafs remain impure.



Impure leafs
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gene1 ?

Healthy
𝐻 = 6; 𝑀 = 1; 𝑆 = 0

Mild
𝐻 = 2; 𝑀 = 12; 𝑆 = 1

Severe
𝐻 = 0; 𝑀 = 1; 𝑆 = 8

≥ 𝟓

gene2 ?

< 𝟓

≥ 𝟒 < 𝟒

o After tracking down the tree, we end up in a leaf

o In each leaf, if we pick some patient, there is a certain probability that the 
patient is healthy, mildly infected, or severely infected



Impurity of the leaves in a Decision Tree
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o Example:  33 samples subdivided into 3 classes:

o classes (attributes): healthy (H); mild infection (M); severe infection (S)

# gene1 gene2 gene3 gene4 gene5 ... class

1 33.5 45.3 56.7 3455.8 34.4 ... H

2 543.5 567.3 6677.4 335.9 334.5 ... M

3 445.5 345.4 667.4 556.4 3445.4 ... M

4 233.1 985.2 33.2 43.4 45.9 ... S

... ... ... ... ... ... ... ...

33 345.4 6677.4 335.9 567.3 33.5 ... S

o The numbers in the table could be expression values or whatever.

o The table could also contain categorical variables like gender 
(f/m), smoking (y/n), …



Assume we have constructed a decision tree:

some question ?

𝐻 = 3; 𝑀 = 0;
𝑆 = 0

𝐻 = 10; 𝑀 = 1;
𝑆 = 1

𝐻 = 5; 𝑀 = 2;
𝑆 = 3

some question ?some question ?

𝐻 = 7; 𝑀 = 0;
𝑆 = 1

o The green leaf contains 3 healthy, no mild, no severe case. That's what we wish: 
the leaf is pure. When ending up in this leaf after asking two questions, we can be 
sure that every person in this leaf is definitely healthy.

o The red leaf contains 5 healthy, 2 mild, and 3 severe. This is an unwanted situation 
because the samples were not very well classified. Persons in this leaf can be 
healthy, or have a mild or a severe infection, each with some probability.



Probabilities of the classes in leaf I
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𝐻 = 3; 𝑀 = 0;
𝑆 = 0

the leftmost leaf in the tree above

o Assume we ended up in this leaf after judging two criteria ("asking two 
questions") 

o If we then pick a patient from this leaf, we have the following probabilities 
that the patient is healthly, mildly infected, or severely infected:

o 𝑛 = 3 : total number of samples in this leaf

o 𝑝1 = Τ3
3 = 1 : probability that a patient in this leaf is healthy.

o 𝑝2 = Τ0
3 = 0 : probability that a patient in this leaf has a mild infection.

o 𝑝3 = Τ0
3 = 0 : probability that a patient in this leaf has a severe infection.



Probabilities of the classes in leaf III

www.matstat.org

𝐻 = 5; 𝑀 = 2;
𝑆 = 3

the 3rd leaf in the tree above

o Assume we ended up in this leaf after judging two criteria ("asking two 
questions") 

o If we then pick a patient from this leaf, we have the following probabilities 
that the patient is healthly, mildly infected, or severely infected:

o 𝑛 = 10 : total number of samples in this leaf

o 𝑝1 = Τ5
10 = 0.5 : probability that a patient in this leaf is healthy.

o 𝑝2 = Τ2
10 = 0.2 : probability that a patient in this leaf has a mild infection.

o 𝑝3 = Τ3
10 = 0.3 : probability that a patient in this leaf has a severe infection.



Entropy definition based on discrete probabilities
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always positive because 𝑝𝑖 ≤ 1

𝐻 = 0

minimum entropy
”order”

𝐻 = 1.0986

maximum entropy
”disorder”

o The entropy has a minimum (of zero) if all probability is concentrated on a 
single category, for instance if 𝑝1 = 1 while 𝑝2 = 0 and 𝑝3 = 0 (left plot). 

o The entropy has a maximum if the probabilities are evenly distributed 
between the categories, for instance if 𝑝1 = Τ1

3 ; 𝑝2 = Τ1
3 and 𝑝3 = Τ1

3

2nd law of thermodynamics: isolated systems spontaneously evolve towards 
maximum entropy. 



Entropy in leaf I
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𝐻 = 3; 𝑀 = 0;
𝑆 = 0

o 𝑛 = 3 : total number of samples in this leaf

o 𝑝1 = Τ3
3 = 1 : probability that a patient in this leaf is healthy.

o 𝑝2 = Τ0
3 = 0 : probability that a patient in this leaf has a mild infection.

o 𝑝3 = Τ0
3 = 0 : probability that a patient in this leaf has a severe infection.

What is 0 · ln(0) ? see Appendix



Entropy in leaf II
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𝐻 = 10; 𝑀 = 1;
𝑆 = 1

o 𝑛 = 12 : total number of samples in this leaf

o 𝑝1 = Τ10
12 : probability that a patient in this leaf is healthy.

o 𝑝2 = Τ1
12 : probability that a patient in this leaf has a mild infection.

o 𝑝3 = Τ1
12 : probability that a patient in this leaf has a severe infection.



Entropy in leaf III
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𝐻 = 5; 𝑀 = 2;
𝑆 = 3

o 𝑛 = 10 : total number of samples in this leaf

o 𝑝1 = Τ5
10 : probability that a patient in this leaf is healthy.

o 𝑝2 = Τ2
10 : probability that a patient in this leaf has a mild infection.

o 𝑝3 = Τ3
10 : probability that a patient in this leaf has a severe infection.



Entropy in leaf IV
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𝐻 = 7; 𝑀 = 0;
𝑆 = 1

o 𝑛 = 8 : total number of samples in this leaf

o 𝑝1 = Τ7
8 : probability that a patient in this leaf is healthy.

o 𝑝2 = Τ0
8 : probability that a patient in this leaf has a mild infection.

o 𝑝3 = Τ1
8 : probability that a patient in this leaf has a severe infection.



Entropy in the leaves
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some question ?

𝐻 = 3; 𝑀 = 0;
𝑆 = 0

𝐻 = 10; 𝑀 = 1;
𝑆 = 1

𝐻 = 5; 𝑀 = 2;
𝑆 = 3

some question ?some question ?

𝐻 = 7; 𝑀 = 0;
𝑆 = 1

𝐻 = 0 𝐻 = 0.566 𝐻 = 1.030 𝐻 = 0.377



Is a question (defining a split) improving classification?

𝐻 = 8; 𝑀 = 2; 𝑆 = 3

some question ?

𝐻 = 3; 𝑀 = 0; 𝑆 = 0 𝐻 = 5; 𝑀 = 2; 𝑆 = 3

𝐻 = 0.925 ; 𝑁 = 13

𝐻 = 0 ; 𝑁 = 3 𝐻 = 1.0297 ; 𝑁 = 10

The child leaves should be "purer" than the parent leaf. How to calculate purity?

Weighted average of the impurity of 
the resulting child nodes.

o 𝑁𝑖 = nr. samples in a leaf
o 𝐻𝑖= entropy in a leaf
o 𝑁 = σ 𝑁𝑖

Oops: Check if the number of H, M, and 
S is the same on each level of the tree!: 
e.g for H: 8 = 3 + 5 



Information gain of a split
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o Information gain = difference between: 

o the entropy in the parent node and 

o the weighted average of the children’s entropy 

o always has a non-negative value

Gain = 0.925 - 0.792 = 0.133 in the example above.

The information gain is the change in information entropy H from a prior 
state to a state that takes some information as given:

𝐼𝐺 𝑇, 𝑎 = 𝐻 𝑇 − 𝐻 𝑇 | 𝑎

Kullback-Leibler divergence



Machine Learning
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o If we once have created a tree, we can classify new samples by "running 
them down the tree" (Breiman, Cutler 1)

o we have learned a classification scheme → machine learning

1 https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm 

http://gureckislab.org/blog



Limiting the complexity of the learned tree
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o Q: Why not create a tree being so big that all leafs are pure? 

o in an extreme case they would just contain a single sample.

o A: Avoid overfitting!

o overfitting means that the model (tree) is too closely 
adapted to the actual dataset under consideration

o Measures to avoid overfitting:

o Stop splitting when gain is not higher than some threshold, or

o build tree until no leaf can be further subdivided, prune the tree afterwards 
by deleting nodes

o pruning: collapse internal nodes into leafs if this reduces the 
classification error on a held-out test set.

o minimum description length

o Check the models by performing cross-validation



Thanks.
I hope you understood that trees are indeed of 

great importance!



Appendix
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Limits of expressions "0/0" or "±∞/±∞"
- L'Hopital's Rule -
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o http://tutorial.math.lamar.edu/Classes/CalcI/LHospitalsRule.aspx

L'Hopital's rule tells us that if we have an indeterminate form 0/0 or ∞/∞ 
all we need to do is to differentiate the numerator and denominator and 
then take the limit.
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Limits of expressions "0/0" or "±∞/±∞"
- L'Hopital's Rule -

−∞

+∞
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Image: http://creepypasta.wikia.com/wiki/Entropy

The entropy is defined as the negated expectation value of the logarithm 
of the probability distribution:

For discrete probability distributions, this translates to:

always positive 
because 𝑝𝑖 ≤ 1

o Entropy captures the amount of randomness or uncertainty in a variable.
o The entropy has a minimum (of zero) if all probability is concentrated on 

a single category, for instance if 𝑝1 = 1 while 𝑝2 = 0 and 𝑝3 = 0 . 
o The entropy has a maximum if the probabilities are evenly distributed 

between the categories, for instance if  𝑝1 = Τ1
3 ; 𝑝2 = Τ1

3 and 𝑝3 = Τ1
3 .



http://uncyclopedia.wikia.com/wiki/Entropy
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