
GCB 2012 Satellite Workshop on Systems Biology of Ageing,  
September 19, 2012, Jena/Germany 

Cross-species analysis of age-related  
transcriptome data 

S. Priebe1, U. MENZEL1, R. Guthke1 and the JenAge consortium2      
  
1Systems Biology and Bioinformatics Group, Hans-Knöll-Institute, Jena.  
2JenAge: Jena Centre for Systems Biology of Ageing 



Scientific name 
Common 

name 
Lifetime 

Caenorhabditis 
elegans 

Worm 2-3 weeks 

Nothobranchius 
furzeri 

Killifish 3 months 

 
Danio rerio 

Zebrafish 30 months 

 
Mus musculus 

   
Mouse 

 
36-48 months 

Multi-species approach 

• 4 - 5 age levels  
• 2 - 5 replicates at each level 



 RNA-Seq data 

Mapping, Normalisation 

Filtering:  
DEG, RPKM, Monotony 

 Analysis:  
Basic: PCA, Clustering, GSEA  

Advanced: Orthology, Decision Trees, Random Forest  

Network Models:  
Correlation, Dynamic Model, Biological Interpretation 

Data flow 
That’s a rough scheme of 
the workflow we use when 
analyzing the RNASeq data. 
The data come from the 
Illumina sequencing 
machines and are  mapped 
to a reference genome of 
the corresponding species. 
An important step is 
filtering which I’m going to 
talk about in a minute. After 
filtering, we apply a number 
of data mining techniques, 
starting from searching 
ortholog genes between 
species up to visualization 
of results. I’m going to talk 
about this in detail. After 
bioinformatic analysis, the 
results are included in 
Network models and are 
subject to biological 
interpretation which can 
lead to further 
bioinformatic analysis or 
even to new sequencing 
runs. 
 



Filtering: 1) DEG, 2) RPKM 

1. DEG: Differentially Expressed Genes (over age) 
• edgeR, DESeq, baySeq (NegBin, overdispersion) 

2. RPKM: Reads per Kb of exon model per Million mapped reads 
 

min. RPKM 

C4b, mouse/brain 

𝑅𝑃𝐾𝑀 = 8.98 
𝑝𝑎𝑑𝑗 = 0.0012    
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Bild: 
plotsEvaluation.R 
(data must be 
 loaded as in  
Dtree_mult_ortho.R 
for example 
MmBrainRPKM.Rdata 
must be loaded) 

An important step in the 
workflow is filtering of genes. 
We apply 3 kinds of filtering:  
1) the first is filtering for 
Differentially Expressed 
Genes (DEG). We use several 
tools which can be used in 
order to do that: namely 
edgeR, DESeq, and baySeq, 
all based on NegBin which is 
the best approximation for 
the distribution of read 
counts from RNA-Seq. The p-
values have been adjusted 
for multiple testing, of 
course. 
2) 2nd,  we optionally filter for 
a minimum read count or, 
more precisely, for a 
minimum RPKM-value. 
RPKM= …. (slide) 
The slide shows the RPKM 
values for the complement 
component 4b gene in the 
mouse brain. We have 5 time 
points, 5 replicates each. The 
gene’s expression is 
significantly changing with 
age (p.adj<0.05), and the 
RPKM averaged over age and 
replicate is also above the 
minimum required RPKM 
value . 

p-values adjusted for 
multiple testing (FDR)  



Filtering: 3) Monotony with age 

• Genes changing monotonically with age are interesting  
• Spearman rank correlation to prototype (Spearman’s ρ) 
• permutation test to calculate p-values 

genes with a strongly 
monotonic slope 

Mouse, brain, 18742 genes 

average correlation coefficient 
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Bild: 
plotsEvaluation.R 
(data must be 
 loaded as in  
Dtree_mult_ortho.R; 
i.e 
MmBrainRPKM.Rdata 
must be loaded) 

• 18742 genes 
• 𝑅𝑃𝐾𝑀 ≥ 1 
• 𝐹𝐷𝑅 ≤ 0.05 

A 3rd,  optional step is filtering 
for genes changing 
monotonically with age. 
Monotony was calculated 
using the Spearman rank 
correlation coefficient, and  a 
MC approach was used to 
incorporate the replicates. 
The picture shows the p-values 
of the correlation test 
(algorithm AS89) vs. the 
calculated correlation 
coefficients for each gene (one 
point stands for one gene). 
Strongly monotonic genes are 
located in the wings (tails) of 
this distribution. The figure 
contains almost 19000 
mouse/brain genes. Genes 
with above-threshold RPKM 
are marked blue, and DEG 
(with FDR<=0.05)  are red. We 
see that  strongly monotonic 
genes often are also DEG , the 
wings are red ..(p-value is the 
“probability that the times 
curves are flat ..”) 



Principal Component Analysis (PCA) To validate the RNA-Seq 
data, we start with a 
Principal Component 
Analysis (PCA). This is a 
PCA for 4 species and the 
corresponding tissues.   
EXPLAIN LEGEND. 
We see is that  C. elegans 
is a lonely island as we 
expect (big evolutionary 
distance). The other 3 
species show similar 
patterns: brain lies SSO of 
the rest of the body. 
In mouse: liver is more 
clearly separated from 
skin than in the fishes. 
Especially important for 
our purposes: Age 
introduces little variation 
compared to species or 
tissue. 
(80 percent of the 
variance is in the 1st 3 
principal components.) 

von Steffen 
4species_PCA.pdf 
2905 genes 
log2(RPKM) 
filter: none 
1-1-1-orthology 
 
 

Principal components 1, 2 & 3 

Variance plot 

C. elegans 

N. furzeri 

D. rerio 

M. musculus 



Entrez Gene IDs 

Orthology: New, integrated R-package 

BioMart via biomaRt R package 
FTP data download 

annotationTools R-package 

Ensembl Gene IDs 

homology R-packages: 

hom.Hs.inp.db, hom.Mm.inp.db, 
hom.Dr.inp.db, hom.Ce.inp.db 

Ensembl Protein IDs 

local orthology R 
package for fast access 

biomaRt R package 

Species mapped IDs 

C. elegans 6426 

M. musculus 8233 

D. rerio 10263 

H. sapiens 8239 

Before we can really 
start with multi-
species analysis, we 
have to identify the 
ortholog genes 
between the species 
we are working with. 
To do this, we make 
use of 3 databases: 
Ensembl Compera, 
Homologene, and 
InParanoid. 
A PhD student, 
Steffen Priebe, has 
written a 
comprehensive R-
package for the 
identification of 
ortholog genes the 
species. This package 
allows automated, 
quick access to 
ortholoy data which 
are partly fetched 
from the net via a 
web interface and 
partly downloaded 
and locally installed. 
The table shows the 
number of genes that 
have orthologs in all 
other organisms.   



Orthology 

Mouse 
C4b 

D.rerio 
C4A 

D.rerio 
wu:fi14a03 

Human 
C4A 

Human 
C4B 

Bild: 
von Steffen 
16.5.12 
nach  
Seminar 

. The figure shows the  orthologs 
for the mouse C4b gene in human 
and D.rerio: we find 2 orthologs 
in human according to Ensembl 
(color of the arrows indicates the 
database it originates from), one 
in D.rerio according to Ensembl 
and one in D.rerio according to 
Homologene (no Inparanoid 
orthologies for this gene). The 
relationships are also confirmed 
by direct rewlationships between 
D.rerio and Human. This is a very 
simple example: often, the 
relationships are much more 
complicated (and confusing). In 
practical calculations, we 
frequently limit ourselves to 
1to1 relationships of orthology. 
 

color of the 
arrows 
indicates 
database of 
origin 



Clustering (across species) 

Union of Species: M. musculus, D. rerio, N. furzeri, C. elegans 

• Fuzzy c-means clustering 
• optimum no. of clusters 

determined using an 
ensemble of cluster 
validation indices  (Guthke 
2005) 

no Filter 
orthology m-n 
cmeans 
euklidisch 
Bild von  
Steffen: 
4species-orthology-analysis-2.pdf 
page 8/17 
odin  

    Cluster 1                   Cluster 2              Cluster 3                Cluster 4 

    Cluster 5                   Cluster 6              Cluster 7    

   age                          age                           age 

n=1957 n=4117 n=3234 n=2343 

n=4948 

n=2150 

n=5377 

Once orthology 
relationships between 
the species are 
established, the actual 
multi-species analysis 
can start. I’d like to start 
with clustering in this 
talk. 
Using clustering, we can 
find genes that show 
similar shapes over time. 
Of special interest for 
our purposes are genes 
that show same shape 
across species.  
This are the results of 
clustering the temporal 
curves of 4 species. 
Clusters were calculated 
by the fuzzy c-means 
algorithm. The optimum  
number of clusters was 
determined to be 7 
using several cluster 
validation indices. The 
results of clustering can 
be used in subsequent 
anlysis, e.g GSEA -> 



Gene Set Enrichment Analysis (GSEA) 

Mm Dr Nf 

Orthology 

Joint GO’s 

GSEA 

Approach I Approach II 

Mm Dr Nf 

GSEA GSEA 

Joint GO’s 

GSEA 

In GSEA, we follow two 
approaches: 
Approch 1: 
we filter genes from 
multiple species and 
determine ortholog genes 
across species. 
With these genes, we 
perform a GSEA that yields 
GO cats jointly changed in 
the species. 
Approach II  makes the 
GSEA for each individual 
species, and then 
interesects the resulting 
significant GO cats.  
App II needs no orthology 
determination. 



GSEA: Graphical Representation 
 

GO:0008150  = “Biological Process” 

GO:0032211  =  
“down-regulation of 
telomere maintenance 
via telomerase activity” 

Mouse, brain: 
176 up-genes  
𝐹𝐷𝑅 ≤ 0.05 
𝑅𝑃𝐾𝑀 ≥ 3 
𝜌 ≥ 0.75 

Script: GOcats.R 
printGraph for 
KS-Test with 
elimination 
Smirnow_elim_10_all.pdf 
monotony calculated 
in 
FitMonotonySpearman*.R 
(FIT_OLD) KS-Test with 

elimination 

This is a graphical 
representation of the 
results of a GSEA made for 
about 180 monotonically 
increasing  mouse /brain - 
genes. 
What you see here is the 
GO domain “Biological 
Process” (root node). The 
red leafs were found to be 
significantly enriched in this 
dataset according to the KS-
Test (with elimination). 
  



GSEA: Table of Enriched GO‘s & Pathways 

Tissue GO-ID Description Cluster 

brain GO:0007399 nervous system development 

brain GO:0007017 microtubule-based process 

brain GO:0007169 transmembrane receptor protein tyrosine … 
 
 

brain KEGG:04512 ECM-receptor interaction 

skin GO:0042113 B cell activation 

skin GO:0031012 Extracellular matrix 

liver GO:0000278 Mitotic cell cycle 

3 species: mouse + 2 fishes, > 200 enriched GO’s 

Clustering GSEA Intersection 

Tabelle von 
Steffen, 
16.5, in 
EvaluationMay24_SP.ppt 

 

This is a part of  a table of 
GO cats and pathways 
found to be significantly 
enriched in the clusters of 
genes with similar 
temporal behavior shown 
above (the 7 clusters). In 
total, there were more 
than 200 significantly 
enriched GO-cats or 
pathways, respectively. 
What you see in the table 
are the IDs and 
descriptions of significant 
GO cats together with an 
icon of the corresponding 
clusters (they are enriched 
in). 



Supervised Machine Learning: Decision Trees 

• Classifier, can be used when the number of variables (genes) is 
higher than the number of observations (transcriptome data sets) 

• pinpoints genes that are informative with regard to some attribute, 
e.g. age, tissue, or species. 

C4b Complement component 4B 

GpnmB Glycoproteine 
(transmembrane) 

Pisd Phosphatidylserine 
decarboxylase 

• C4.5 algorithm (Quinlan 1993).  
• Overfitting reduced by pruning  
 

Mouse, brain 
𝜌 ≥ 0.85 

no FDR or RPKM-filter 

Script: 
Dtree_mult.R 
log: 
treeBrainMmDrNf.log 
 
 

Another way to obtain lists 
of genes that play a role in 
ageing is supervised 
machine learning. e.g. by 
Decision Trees. 
TEXT 
Here you see a decision 
tree obtained for mouse 
brain data which were 
filtered for monotony 
beforehand. The C4b gene 
is clearly informative with 
regard to age. However, 
C4b is not the only gene 
that is a good classifier 
with respect to age. To 
obtain a complete list of 
genes that can serve as a 
classifier, we applied 
Random Forest ensemble  
classification technique -> 



Random Forest: Variable Importance 

• Ensemble classifier, builds many Decision Trees (Breiman, Cutler) 
• random exclusion of a part of variables (and samples) in each tree 
• Variable importance: measures explanatory power of a variable (gene) 

genes 

Apc 
C4b 
Pisd-ps1 
ing4 
depdc1a 
Pcdh20 
Pisd 
Plekhb1 
Epha3 
Tmem167 
Pcdhb9 
Gpnmb 
Prkci 
Ulk2 
… 

Script: 
Dtree_mult.R 
or similar, 
gene list saved 
with write.table 
to  
importantGenes.txt 

 

genes 

 
Permutation Importance 

Impurity Importance 

same data as 
in previous 
slide 

The Random Forest 
algorithm builds 
many Decision Trees 
by randomly 
excluding a part of 
the genes (and 
samples) in each 
tree. The variable 
importance is a 
measure for 
explanatory power 
of a certain gene. 
In the plot, you see 
two measures of 
importance vs. gene 
names. These gene 
names constitute a 
list of biomarkers 
which can be used 
in further analysis. 

Putative  
biomarkers: 



The Random Forest 
classifier also measures 
the pairwise sample 
proximity. Two samples 
are close if they end up 
in the same leaf 
frequently.  Based on 
this proximity, we 
constructed multi-
dimensional scaling 
(MDS) plots. The left  
plot shows that age 
levels perfectly group 
together in mouse/brain 
data. If orthologs in Dr 
are added (right) the 
situation gets more 
involved. We see that 
mouse and D.rerio data 
essentially form their 
own clusters. Right you 
see the “mouse ring” 
from aside, and left the 
d.rerio sample, also 
exhibiting a clear age 
structure.  
In the PCA plot we’ve 
seen before, we used 
the euclidian distance of 
the expression values as 
a dissimilarity measure. 
Here, we deduced the 
dissimilarity from the 
proximity of the Random 
Forest classifier. 
Completely different 
measures. Nevertheless, 
the results allow very 
similar conclusions, 

Random Forest: Sample Proximity 

• A RF-classifier estimates the pairwise sample proximity (SP) 
• samples are “close” if they end up in the same leaf frequently 

Scripts: 

left fig.: 
DTRee_mult.R 
forest.mds 
plot improved in 
plotsEvaluation.R 
importance2D.png 
right fig.: 
Dtree_mult_ortho_FDR.R 
image: 
Evaluation_MDS_plots_120517.RData 
object forest.mds3D 
improved in 
plotsEvaluation.R 
importance3D.png 
 

Mouse, Brain Mouse & D.rerio,  
Brain 

𝜌 ≥ 0.85 
no FDR or RPKM-filter 

𝐹𝐷𝑅 ≤ 0.05 
𝑅𝑃𝐾𝑀 ≥ 1 
𝜌 ≥ 0.3 

2 month 

15 month 

9 month 
24 month 

30 month 

Mouse 

D.rerio 

MDS 



Random Forest: Hierarchical clustering 

• Hierarchical clustering for M. musculus and D. rerio based on 
proximity from Random Forest 

Script: 
Dtree_mult_ortho_FDR.R 
improved in  
plotsEvaluation.R 
heatmapEva.png 
same data as in the 3D 
MDS plot above 
(Mm + Dr) 
 

30 month 
2 month 
24 month 
9 month 
15 month 

M. musculus 
 

D. rerio 

age 

This is a heatmap for 
the same dataset. 
We see that species 
clearly group 
together, and that 
the within-species 
age discrimination is 
perfect (the colors 
decoding age do not 
mix).  



Correlation Networks 

tag-300 

Y63D3A.7 

tag-300/Y110A7A.12 encodes an ortholog of 
subunit B of the cytoplasmic (V1)  domain of 
vacuolar proton-translocating ATPase 
 
Y63D3A.7 encodes the C. elegans ortholog 
of the NDUFA2/B8 subunit of the 
mitochondrial NADH dehydrogenase 
(ubiquinone) complex (complex I) Slide von 

Steffen, 
16.5, in 
EvaluationMay24_SP.ppt 

 

The final goal of the analysis 
is establishing networks 
connecting the genes, e.g. 
correlation networks. In such 
a network, the nodes are 
genes and the edges stand 
for the correlation between 
the expression values of 
these genes. The plot shows 
a difference network for the 
Oxidative Phosphorylation 
pathway in C. elegans.  Two 
networks were used to 
obtain this figure: A network 
in the unpertubed state 
(DMSO, solvent) and a 
network under the influence 
of a live-span changing 
perturbation (rotenone). The 
unpertubed network was 
then substracted from the 
perturbed one. A positve 
difference means that the 
correlation increases under 
the influence of rotenone 
(green edges), and a 
neagtive difference (red) 
means that the correlation 
decreases under rotenone. 
We see that rotenone 
increases the correlation in 
most of the cases. 

Difference network: C. elegans 
KEGG-pathway “Oxidative Phosphorylation” 
Rotenone (perturbed) - DMSO (unpert.) 

Diff. > 0 
Diff. < 0 

Rot. 
DOG 



Pathways with significantly changed co-expression 

count portion of connected genes in the difference 
network  in a particalular pathway/ GO term 
count portion of connected genes in the difference 
network as a whole 
-> identify pathways with disproportinately  many 
connected genes (Fisher’s Exact Test) 
do this for 2881 Go terms and for 125 KEGG-
pathways  

In the difference network: 
• count fraction of connected genes in a pathway/GO-term 
• count fraction of connected genes in the whole network 
 pathways with disproportionately many connected genes 

Fisher’s Exact Test 
fisher.test 

Do this for:  
• 2881 GO terms and  
• 125 KEGG-pathways  



Pathways with significantly changed co-expression 

KEGG-ID Term p.adj Genes … connected 

3010 Ribosome 0.0000 83 41 

1100 Metabolic pathways 0.0000 596 214 

190 Oxidative phosphorylation 0.0000 100 39 

3018 RNA degradation 0.0159 37 9 

350 Tyrosine metabolism 0.0396 19 3 

• KEGG-pathways whose co-expression is affected 
most by the perturbation (DOG, glucose restriction):  



Outlook 

• Inclusion of human cell lines into the analysis (orthology) 

• Perturbed ageing for more species (currently Ce, Mm, Hs only) 

• Dynamic models of hormesis connected to ageing 

• mTOR 

• preliminary results achieved 

• Identification of relevant biomarkers for ageing, and of targets 

to support healthy ageing 

• Wet-lab  validation  
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