GCB 2012 Satellite Workshop on Systems Biology of Ageing, September 19, 2012, Jena/Germany

Cross-species analysis of age-related transcriptome data

S. Priebe¹, U. MENZEL¹, R. Guthke¹ and the JenAge consortium²

¹Systems Biology and Bioinformatics Group, Hans-Knöll-Institute, Jena. ²JenAge: Jena Centre for Systems Biology of Ageing

Multi-species approach

Scientific name	Common name	Lifetime	
Caenorhabditis elegans	Worm	2-3 weeks	
 Nothobranchius furzeri	Killifish	3 months	
Danio rerio	Zebrafish	30 months	
Mus musculus	Mouse	36-48 months	
 4 - 5 age levels 2 - 5 replicates at each level 			

Data flow

Filtering: 1) DEG, 2) RPKM

- 1. DEG: Differentially Expressed Genes (over age)
 - edgeR, DESeq, baySeq (NegBin, overdispersion)
- 2. RPKM: Reads per Kb of exon model per Million mapped reads

Filtering: 3) Monotony with age

- Genes changing monotonically with age are interesting
- Spearman rank correlation to prototype (Spearman's ρ)
- permutation test to calculate p-values

Principal Component Analysis (PCA)

PC3

Orthology: New, integrated R-package

Orthology

CEnsembl

Clustering (across species)

Union of Species: *M. musculus, D. rerio, N. furzeri, C. elegans*

Gene Set Enrichment Analysis (GSEA)

GSEA: Graphical Representation

GSEA: Table of Enriched GO's & Pathways

Clustering GSEA Intersection

3 species: mouse + 2 fishes, > 200 enriched GO's

Tissue	GO-ID	Description	Cluster
brain	GO:0007399	nervous system development	
brain	GO:0007017	microtubule-based process	
brain	GO:0007169	transmembrane receptor protein tyrosine	
brain	KEGG:04512	ECM-receptor interaction	
skin	GO:0042113	B cell activation	
skin	GO:0031012	Extracellular matrix	
liver	GO:0000278	Mitotic cell cycle	

Supervised Machine Learning: Decision Trees

- Classifier, can be used when the number of variables (genes) is higher than the number of observations (transcriptome data sets)
- pinpoints genes that are informative with regard to some attribute, e.g. age, tissue, or species.

Mouse, brain			
$ \bar{ ho} \ge 0.85$			
no FDR or RPKM-filter			

C4b	Complement component 4B
GpnmB	Glycoproteine (transmembrane)
Pisd	Phosphatidylserine decarboxylase

- C4.5 algorithm (Quinlan 1993).
- Overfitting reduced by pruning

Random Forest: Variable Importance

- Ensemble classifier, builds many Decision Trees (Breiman, Cutler)
- random exclusion of a part of variables (and samples) in each tree
- Variable importance: measures explanatory power of a variable (gene)

Random Forest: Sample Proximity

- A RF-classifier estimates the pairwise sample proximity (SP)
- samples are "close" if they end up in the same leaf frequently

Random Forest: Hierarchical clustering

• Hierarchical clustering for *M. musculus* and *D. rerio* based on proximity from Random Forest

Correlation Networks

Rot.

DOG

In the difference network:

- count fraction of connected genes in a pathway/GO-term
- count fraction of connected genes in the whole network
- pathways with disproportionately many connected genes

Do this for:

- 2881 GO terms and
- 125 KEGG-pathways

DN: DOG-DMSO

• KEGG-pathways whose co-expression is affected most by the perturbation (DOG, glucose restriction):

KEGG-ID	Term	p.adj	Genes	connected
3010	Ribosome	0.0000	83	41
1100	Metabolic pathways	0.0000	596	214
190	Oxidative phosphorylation	0.0000	100	39
3018	RNA degradation	0.0159	37	9
350	Tyrosine metabolism	0.0396	19	3

Outlook

- Inclusion of human cell lines into the analysis (orthology)
- Perturbed ageing for more species (currently Ce, Mm, Hs only)
- Dynamic models of hormesis connected to ageing
 - mTOR
 - preliminary results achieved
- Identification of relevant biomarkers for ageing, and of targets to support healthy ageing
- Wet-lab validation

Jena Centre for Systems Biology of Ageing

Systems Biology and Bioinformatics Group, Hans-Knöll-Institute (HKI):

- Steffen Priebe
- Uwe Menzel
- Reinhard Guthke

Fritz Lipmann Institute (FLI):

- Alessandro Cellerino
- Christoph Englert
- Stefan Diekmann/Peter Hemmerich
- Matthias Platzer
- Jürgen Sühnel

Friedrich Schiller University Jena:

- Udo Hahn
- Christoph Kaleta
- Michael Ristow
- Stefan Schuster

Jena University Hospital:

Otto Witte

Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute

Leibniz Institute for Age Research

Fritz Lipmann Institute (FLI)

