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Inference

o drawing conclusions from data with random variation (noise)
o more specific: infer parameters on the basis of samples
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Overview

o Basics, by means of 2 examples:

©)

O

©)

O

Table game (Thomas Bayes)
comparison with Maximum Likelihood
Coin flipping

comparison with Maximum Likelihood

o Empirical Bayes (EB)

©)

edgeR and relatives
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Related readings

. nature cominaturebiotechnology

PRIMER

What is Bayesian statistics?

Sean R Eddy

There seem to be a lot of computational blology papers with ‘Bayeslan’ In thelr titles these days. What's distinctlive
about ‘Bayeslan” methods?

There are excellent introductory books on  If pwere known, this would be easy Inferring o from the data

Bayesian analysis'3, but the key ideas behind  Because Alice just needs one more point to  The problem is that Alice and Bob don’t know
the burzword can be grasped quickly. Con-  win, Bob only wins the game if he takes the  p. The very fact that Alice is ahead 5-3 is evi-
sider the following gambling purzle—one next three points in a row. The probability of  dence that the unknown position of the mark

o decsription of the table game
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Essentials

Binomial distribution, Bin(n, p)
Expectation values, E[X], E[f(X)]
Bayes theorem (conditional probabilities)

Essentials.pdf



Table game: throw a ball

Alice
wins

Bob
wins

.
' 1-p

Initial throw determines p - Alice and Bob don't see it !
Probability that Alice wins a single throw : p
Probability that Bob wins a single throw:1 —p

First player with 6 points wins

Intermediate result: A = 5; B = 3

How can Alice estimate her chances to win ?
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Alice’ odds

Intermediate result: A = 5; B = 3; first player with 6 points wins —
Bob can only win the game when he wins the next 3 throws :

P(Bob wins) = P(BBB) = (1 — p)3
Alice wins if Bob does not win:

P(Alice wins) =1 — P(Bob wins) =1 — (1 —p)3

(This is the easiest way to think of it since there are multiple possibilities
how Alice can win.)

Hurray !!- that’s it (the solution)!

L Isit?
We don’t have p !

Uwe Menzel, 2012



1. The naive approach

Alice won 5 out of 8 throws — the probability that she wins in a
single throw is 5/8:

5

A=5;B=3 /) P=3

The probabilities to win the whole game are therefore:

3

3 485

. ] . . _ 3 — — | - = —

P(Alicewins) =1—-(1—-p)° =1 (8) 512
P(Bob wins) = 2/
obwins) = —

_ P(Alice wins)

= ~ 18:1
P(Bob wins)

odds
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2. Maximume-Likelihood (ML)

The game is a sequence of independent trials (Bernoulli trials); the
probability of success in each trial is p. Therefore, the number of
successes in n trials is binomially distributed:

(NN n—k  Probability mass function for the binomial
P(k successes | p) _ (k) p (1- p) distribution with probability of success = p

Probability that Alice wins 5 throws out of 8,
probability p to win a single throw unknown

P(A=5;B =3|p)=(§)p5 (1-p)°

In ML, we search for the parameter p that makes the observation most likely,
i.e. we maximize the following expression w.r.t. the parameter p:

L(p) = (g)pS (1-p)® ——) Maximum

we can maximize the
logarithm instead (easier)

dl 5 3 5
— — = — odds ~ 18:1
=0 C— P73 —

dp p 1-p (as in the naive approach)

I(p)=In(L)=C+5-In(p) +3-In(1—p)

Uwe Menzel, 2012



2. Maximum-Likelihood (ML)

Density

Sample and ML-Fit

ML-Fit.R |

015

.10

0.05
1

0.00
|
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3. Bayesian approach

We had: P(Bob wins) = P(BBB) = (1 — p)3. Now, the idea is to calculate the
expected value of this expression by considering p as a random variable:

E(Bobwins) = F {(1 — p)3] expectation, p random!

Because p is continuous in the interval (0, 1), this reads:

E [(1 —p)g} = /01 (1—p)°- fp) dp

Here, a probability density function f(p) was introduced. This stands for
the main idea of the Bayesian approach: we treat the parameter under
investigation as a random variable, i.e. we allow the parameter p to be
distributed with some f(p). The observation made is incorporated into
the calculation by using for f(p) the conditional probability, conditioned
on the observed data, f(p) = P(p | A = 5, B = 3), so that we get:

1
E(Bobwins)—/ (1—p)’-P(p|A=5,B=23)dp
0 g _

observed data
Uwe Menzel, 2012



3. Bayesian approach
E(Bobwins)zfl(l—p)g-P(pA:5,B:3) dp
0

We need P(p |A = 5; B = 3), the probability distribution of the parameter p
given the observed data. This is called the posterior probability, because it is
a probability determined after seeing the data. However, we don’t have
P(p|A=5;B=3), we have only P(A=5;B =3|p), delivered by the
binomial probability mass function. This is a nice chance to use Bayes law:

P(5,3 | p) - P(p)
P(5,3)

P(p|5,3)=

Here, P(p) is the unconditioned (prior) probability distribution of p, and
P(5,3) = P(A = 5; B = 3) is the total probability of the observation. The
latter can be calculated using the Law of total probability, leading to:

P(5,3|p)- P(p)

waﬁﬁiGPQSW%P@




3. Bayesian approach

1
FE (Bob wins) = / (1 —p)3 - P(p|5,3)dp now use Bayes law —
0

1

P(5

E (Bob wins) = / (1-p)* 5, dp  now use total prob. —
0

¥ (Bob wins) — L (L= P(5:3]p) - Plp) dp [ P(p) =1 ]

[P(.3|p)- P(p) dp flat prior

We need the prior distribution P(p). If we have no idea about this distribution,
we might use a "flat prior”, P(p) = 1in (0, 1), so that we get:

3 8 3
JA=p)"- () p°(1—=p)" dp PMF of the binomial

f (g) o (1 — p)3 dp distribution was used here

E (Bob wins) =

integral can be solved

Uwe Menzel, 2012



3. Bayesian approach

PP -0" dp e intearal leads to G
E (Bob wins) = - . feta integral, leads to Gamma
fO p° (1 —p)° dp unction —

['(n)-T'(m) _ (n—1)! (m—1)!
['(n+m) (n+m —1)!

1
/ PP (1=p)" T dp=
0

01p5(1—p)6 dp_ 5-61-91 1
Jops(1—p)® dp 120-50-31 11

1
—> F(Alice wins) = %

—> odds(Alice wins) =10 : 1

—y F (Bobwins) =

www.matstat.org



Comparison of the results

1d P(Alice wins) 18:1 ) )

= = 18: naive approac
oaas P(Bob wins) PP

dds = DAUCEWInS) o Maximum Likelihood

= = 18: aximum Likelihoo

oaas P(Bob wins)

dds = P(Alice wins) =10:1 Bayesian approach
oaas = P(Bob wins) Y bb

Which one is correct ?

@
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Which one is correct?

o Just play the game (a lot of times)
o see table Game.html; more details in table Game.R

NumberaliceWins 0
NumberBobWins = 0

numberGames = 5000

pInitArray = numeric (numberGames)

for (i in 1:numberGames) |

pInit = get pInit() # renew in each game!
pInitArray[i]l = pInit # save for histogram of postericor distribution

ZlicePoints = 5 # current score
BobsPoints = 3

while ( {(AlicePoints < 6) && (BobsPoints < 6)) { # play this game until one participant wins
nextThrow = runif(l, min = 0, max = 1)
if ( nextThrow <= pInit) {AlicePoints = AlicePoints + 1} else {BobsPoints = BobsPoints + 1}

}

if (AlicePoints == 6) {NumberRliceWins = NumberZliceWins + 1} else {NumberBobWins = NumberBobWins + 1}

}
(NumberAliceWins + NumberBobWins) == numberGames # This must ke TRUE

Uwe Menzel, 2012



Distribution of the posterior probability
- given the intermediate result A=5 & B=3 -

Distribution of plnit knowing that A=5 and B=3

g -
posterior probability
g P(p|A=5,B =3)
table-Game.R
g B
g -
-

[ I ] I 1
0.2 0.4 0.8 og 1.0

plnitArray

www.matstat.org



O O O O

Results of the table game simulation

see table-Game.html (linked)

the table game algorithm includes random components

— better and better results can be achieved by simulating more and more games
— increase number of played games until the results get stable:

Odds vs. #games

The simulation yields the
¢ odds 10: 1, the result of the
Bayesian approach.

10.0
|
»

]

9.5
|

odds (for Alice)

9.0

0 500000 1000000 1500000 2000000 2500000 3000000

number of simulated games



Coin flipping

head, probability = p

o Task: infer p (which might not be exactly 0.5 )

o Use:
o observed data: number of heads tossed; number of tails tossed
o a-priori knowledge (experience): p should be close to 0.5

Naive approach:

o 10 flips = h = 3;t = 7 (ten flips are by far not enough, but let us use
this for now to demonstrate the principle)

o - P(h) =3/10;P(t) =7/10

Hmmbh, I don’t think we can trust that, this is too far from 0.5. It
contradicts experience. Try Maximum Likelihood —

www.matstat.org



Maximum Likelihood

Let p be the probability to flip head (“success”). A single flip can be regarded
as a Bernoulli trial. The number of successes in n independent Bernoulli trials
is binomially distributed, with the probability mass function

10
P (3 heads in 10 casts) = (3 )pg (1 —p)7

10
L(p) = ( 5 )p3 (1— p)7 Likelihood, to maximize!

I(p)=In(L)=C+3-In(p)+7-1n(1 — p)

—L:() — p:P(heads):i

S
dp p 1-—p

Uwe Menzel, 2012



Bayesian approach

We search the probability p to flip head. As in the previous example, we
calculate the expected value of this parameter by treating p as a

random variable:

1
E(p) = / p-P(p|data) dp  expectation, p random
0

Again, we use a distribution of p which is conditioned on the observed data.
Using Bayes law, we can write:

( posterior probability

\

P(p|data) =

likelihood prior probability \

!

P (data | p) - P(p)

P(data)

-

posterior ~ likelihood x prior

alternative: MAP
(maximum a posteori)

)

www.matstat.org



Bayesian approach

( posterior probability likelihood prior probability \

\ 1 -

P(p | data) _ P(data|p)-P(p)

P(data)
\ posterior ~ likelihood x prior J
P (data | p) = 5 p° (1 —p) likelihood, from binomial distribution

P(p) : prior distribution, to be chosen. See below.

P(p | data): posterior distribution, can be calculated once prior is
chosen. See below.

www.matstat.org
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05 1.0 1.5 20 25 30 35

0.0

The prior distribution P(p)

Bayesian inference: consider p = P(head) as not being “sharp”, but
distributed with some probability density function

based on experience, we expect p to be closely distributed around 0.5
therefore, we choose a prior that is concentrated around 0.5

using the Beta-distribution is very convenient, as we will see below

Probability Density Function

1 X ~ Beta («, 5)

02 04 06 08

function dbeta () inR
X ~ Beta(a, 5)

87

www.matstat.org



The prior distribution P(p)

_ Tla+8) 0 81
E(X) = “ V(X) = 2@ i mean and variance
ot p (a+8)" (a+B+1)
a=08 — FE(X)=05 mean is 0.5, as desired for coin flipping

1 The bigger a and  (with @ = f8), the lower the
a=p0 = V(X)~ S.q+4 Vvariance - possibility to control the shape of
the prior. a =8 =100 - V(X) = 0.0012

008

V' (X) versus a, witha = f§

a and ( are called hyperparameters,
because they determine the distribution of
another parameter: p

0.08

0.04

The Beta-distribution (with a = 8) seems to be
a suitable prior for the coin-flipping problem

002

000
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The posterior distribution P(p | data)

P(data | p) - P(p)

P(p | data) = posterior ; likelihood ; prior

P(data)
B 10 , Ia+p) _
P(Pldata)—P(data)'(3)p3 =2 T ! L(1-p)ft

P(data) = / P (data | p) - P(p) dp law of total probability

(oo

— 7+5—-1
proct.(1-p)"°

—y P (p]|data) = —

fy ot (1= ) dp

! _ C'(m)-T(n)
. m—1 . n—1 —
in general, we have /O p (1—p) dp T (m )

Uwe Menzel, 2012



The posterior distribution P(p | data)

I'(m)-T'(n)
L(m+n)

1
in general, we have / pmt (1 —p)" T dp=
0

1
which yields 3ta—t (1 _ 701 g _ LB+ @) DT+ 5)
y /Op (1-p) P T10 4 0t )

o F(10+a+/8) a3 ta—1 o oNTtHB8-1
P(p|dam)—F(3—|—a)-F(7—|—B) p - (1= p)

P (p | data) ~ Beta (34 «,7+ )  posterior is Beta-distributed

I'(m+n) 1 ne1 m=3+a«a

because  Beta(p|m,n) =

We used as prior the distribution Beta(a, ). The posterior distribution
is also a Beta distribution with somewhat changed parameters. As we
have seen above, we can arbitrarily narrow down the posterior by
choosing higher and higher values for a and f (see also next page).
Furthermore, as we will see soon, this also shifts the expectation for p
towards the value 0.5.



The posterior distribution P(p | data)

We can arbitrarily narrow down the posterior by choosing higher and
higher values for a and . That also shifts the expectation for p towards
the value 0.5 (see below).

— a=p=200
SIS S PDF of the calculated
— a=p=20 posterior probability

Beta(3 + a,7 + B) for
different values of a and (3,
with @« = f. Higher values
of a and S confine the
posterior to the region
around the mean, which is

0.5 (if = B).

10

0.3 04 0.5 0.6 0.7
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Result: Expectation of p

1
E(p) = / p-P (p | data) dp  expectation, p random
0

- _/
Y

Posterior distribution

I'(10 _
P(p| data) = NE (+ a;—(;(—;f—)ﬁ) ptteto(1 - p)7+5 " posterior distribution
10+ a+ B) /1 ddo—1 T+B—1
E(p) = : tamlo(1 - d
: _ T'(m)-T(n)
use fo pr - (L=p)" " dp (m )

F(10+a+p3) TA+a) T(7T+5)

E@%:n3+@-n7+m' T(11+a+3)

- T(10+a+8) I'1+ «)
[E@%‘ I'(3 +a) im1+a+mJ

Uwe Menzel, 2012



Result: Expectation of p

10+ a+pB) I'4+ «)
Bip) = I'(3+a) TI(1l+a+p)

This is easier to calculate if we choose integers for a and . In this case, we
can use I'(n) = (n — 1)! (the I'-function for big arguments might be hard to
calculate)

2+a) (10+a+B8)! 10+a+s

— E(p):(9+oa+[3)! B+a) 340«

0.50
|

E(p) wemmeemmeeereoserr Increasing the hyperparameters a
) and f drives the solution of the coin
flipping problem, i.e. the expected
value of p, towards 0.5. By choosing
appropiate values for ¢ and S , we
can come as close as desired to 0.5.
This makes the Bayesian approach
somewhat arbitrary! We can only
choose hyperparameters which are
a, B well-established!

I I I I I I
0 100 200 300 400 500

045 0.46 047 048 049
| | | | |

0.44
|
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Summary, coin flipping experiment

Approach Estimated p
Naive approach 0.3
Maximum likelihood 0.3
Bayes,a = f = 100 0.4905

Applying the Bayesian approach, we have choosen a prior with a very
narrow distribution around 0.5 (¢ = f = 100).

By incorporating the prior distribution, we actually add pseudocounts to
the observed counts of both head and tail, driving the expectation for p
towards 0.5.

Adding more and more pseudocounts (higher a and £ ) assigns more and
more weight to prior knowledge.

We have to find a trade-off between the actually observed data and the
prior knowledge (represented by the prior distribution).

www.matstat.org



RNA-Seq, Microarrays

Task: compare groups (healthy < sick, treated < untreated, ...)
o find Differentially Expressed Genes (DEG’s) _

X-Y
o Statistical (parametric) tests » T = — ™ t(f)
Problem: too few measurements in the groups ne T n,
o unreliable estimates for the parameters (X,Y, S¢, S7)
o hinders identification of significantly DEG'’s
large samples small samples

15

Frequency
10
Frequency

www.matstat.org



edgeR

* Robinson and Smyth, Biostatistics 2008

— estimating the NegBin-variance (dispersion) globally across all genes

— common dispersion across all genes

* Robinson and Smyth, Bioinformatics 2007

— empirical Bayes model for variance estimation

— permits gene specific dispersion which is though driven towards a

common value inferred from all genes

* Robinson, McCarthy, Smyth, Bioinformatics 2010

— edgeR, see the edgeR users guide

— ! 7

! ! T 1

geneA geneB geneC geneD geneE geneF geneG

www.matstat.org
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geneH

global variance

gene-
specific
variance



Standard Bayesian Empirical Bayes (EB)

P(data | p) - P(p) _ ( P(datale) - P(¢)
Ep) = b[p. P(data) dp Elg) = j(p P(data) dg

P(¢p): a function of parameters

P(p): Beta-function, parameters a and 8 _ _ _
(which can in turn be parametrized)

prior is choosen without looking at our hyperparameters estimated from the
own data (above, we have choosen « actual observation (e.g. borrowing
and S out of prior knowledge, not . information from neighboring
connected to the actual data observed) = locations in same dataset)

www.matstat.org



Appendix

Bayesian Statistics

Uwe Menzel, 2012
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Conjugate priors for discrete random variables

Discrete likelihood distributions

Likelihood

Bernoulli

Binomial

Megative Binomial
with known failure
number r

Poisson

Poisson

Categorical

Multinomial

Hypergeometric
with known total
population size N

Geometric

Model parameters

p (probability)

£ (probability)

p (probability)

A drate)

A (rate)

Pp (probability vector). k (number of

categories, i.e. size of gy

Pp (probability vector), k (number of

categories. i.e. size of p)

M (number of target members)

Po (probability)

Conjugate prior
distribution

Beta

Beta

Beta

Gamma

Gamma

Dirichlet

Dirichlet

Beta-binomial¥

Beta

Prior
hyperparameters

a, ¢
a, 3

a, ¢

k, 0

Of, ﬁ [note 3]

n=N,a,

a, ¢

Wikipedia
Posterior hyperparameters
il m
CF—Q—Z.’II%'_, ﬁ+n—2$é
tzl - i=1 -
o -+ ZI,‘, ,3 -+ Z_N.t' - ZI;
i=1 i=1 =1

n
O:—Q-E:cg-, 8+rn

=1

n 9
k L
+;$ no- 1

"
a+dx;, f+n
i=1

a + (€1, ..., ¢ ), Where C; is the number of
observations In category /

n
ot Y %
i=1
n n 7
o+ 2 B> N=S
=1 =1 =1

m
a+n, B+
i=1

www.matstat.org

Interpretation of hyperparameters™® ']
[rote 1]

o — 1successes, (3 — 1failures

o — 1successes. 3 — 1tailuresh™e )

a — 1 total successes, 3 — 1 failures"™ " cie.

experiments. assuming 7 stays fixed)

[ total occurrences in 1,’9 intervals

(¥ total occurrences in ‘ﬁ intervals

cy — loceurrences of category ginote 1l
=[note 1]

cr; — 1 occurrences of category ¢

o — 1 successes, (3 — 1railures"™ !

o — 1 experiments, [J — 1 total failurest™* "

g-1

r

[edit]

Posterior predictive "%

(]_!

p@=1)= m
BetaBin(#|d/, 3"

(heta-hinomialy

9!
NB(3|K, ——
(&K, )

(negative binomialy

1
NB(I'Q ! 1+ ﬂr)

(negative binomial
i
— . ¥
pli=i)=
Z:' ax!

_ 4G
Z‘i&i +n

DirMult(x|a)

(Dirichlet-multinomial)



Conjugate priors for continuous random variables

Wikipedia

Continuous likelihood distributions [edi

Note: In all cases below, the data is assumed to consist of n points Tq, - . ., Ty (which will be random vectors in the multivariate cases).

Conjugate prior Prior

Likelihood Model parameters . hyperparameters Posterior hyperparameters Interpretation of hyperparameters Posterior predictive"® 4
b Zinm) /(1 n
Narmal i O’ﬁ 0'(",! a? )’ mean was estimated from observations with total precision (sum of all individual precisions) prey 1 o Bl
with known variance 2 |X (Me2M Marmal fo, {J'a 1 n ! ]/Uﬁand with sample mean T N(&|pg on +07)
0'
MNormal T = = i (,_ n'r) = o mean was estimated from obsewvations with total precision (sum of all individual precisions)Tp N -‘ ' 1 1 - 5]
with known precision # (mean) Mormal Hos To ok + E]: o + » Ta o+ T and with sample mean T v Tlkos T_G‘ + =
i=
Mormal i P i g botesi n Z:_l (i — ,H} variance was estimated from 9y observations with sample variance é (i.e. with sum of squared ¢ . 2 _ gt
with known mean g (variance) MVerse gamma a, o+ §.~ f'j + ) o ¥ Qu’(-rlﬂ- o =/ /ﬂ’ )
deviations 23)
. 2 n — 2
Mormal ) Scaled inverse 2 vog + 30 1(;! i — ) 2 N 2]
e e S variance was estimated from 1/ observations with sample variance p
with known mean g @ tariance) chi-squared ¥y To v+m, v+n P T tw(T|p,0q)
g
Narmal n Z’-‘ (ri" - jr)2 precision was estimated from 2y observations with sample variance — (i.e. with sum of = 2 y
A [note 3] X y i=1 b — 1Bl
with known mean g T (precision) Gamma o, 3 o4+ E’ J.j + 72 . ) o fzuf(fl.il- o- =4 /n)
squared deviations 23)
Vg + nT L N n
— n, o =1 " " , — .
ez vin 2 mean was estimated from i/ observations with sample mean T: variance was estimated from ]
Normal-inverse n — 2 . g+
Mormal Assuming SFiE Mo, ¥, @, B 84+ 1 5 :[1 _= nv (T ”0) 2¢¥ + 1 observations with sample mean T and sample variance — (i.e. with sum of squared  fo,r r|,u'. ¥
exchangeahilit ! 2 ! + o v
g J L/ qp. 2 deviations 2%
« Tisthe sample mean
Vg + nT L N n
— n, o =1 " " , — - .
e vin 2 mean was estimated from &/ observations with sample mean T. and precision was estimated ]
n — 1g)? - gl +
Normal Assuming Normal-gamma Ho, ¥, @, B 8+ 1 E [J nv (T ”0) from 2¢x + 1 observations with sample mean T and sample variance — (i.e. with sum of ton’ (r“;'. %)
exchangeability g 2 v+n 2 o oy

squared deviations 24)
« Tisthe sample mean

(5! +nZ™) ! (Z5 g+ nE™

Multivariate normal with

X - ) 1 gy -1 : mean was estimated from observations with total precision (sum of all individual precisions) res ' r 5]
:nown covariance matrix | g(mean vector) Multivariate normal | g, Hg (EU +nE ) o Land with sample mean & N (x||u.0 2o + X)
« X is the sample mean
1 —
Multivariate n@mal with T Muivarizte normal | zg, Ag (Ao_+ nA)" (Aopg + nAX), (Ag +nA) |meanwas estimatedfruT observations with total precision (sum of all individual precisions) A N il#‘fl’- (Aui—l n Afl}fl El
knawn precision matrix A « X isthe sample mean and with sample mean &
n
Wiltivariate narmal with - . e e T . /.. 1 S
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ebayes{limma} R

o Gordon Smyth, (2004). Linear models and empirical Bayes methods for
assessing differential expression in microarray experiments. Statistical
Applications in Genetics and Molecular Biology, Volume 3

o empirical Bayes shrinkage of the standard errors towards a common
value

o borrow information from all genes to infer the variance for each group of
replicates

——

| ]
ui]

A
Lol O p

ene sexXxpressil

.
TR T P S R TT SR = 7
o

LL

= 4= —— = — == -] -

TTTEeraent =
¥ L L-11 AN L Ll il 1Ol 1

AL ® 11 ®
= =

Ll L Ol Lo = — il

set.zseed (2004) ; invisibkble(runif(100))
M <— matrix{rnorm{(100%6,=sd=0.3),100,6)
M[1,] <— M[1,] + 1

fit <— 1lmFit (M)

.: 5 ]

fit <- eBayes(fit) https://www.rdocumentation.org/packages
topTable (fit) /limma/versions/3.28.14 /topics/ebayes
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