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Inference

o drawing conclusions from data with random variation (noise)
o more specific: infer parameters on the basis of samples

𝜇, 𝜎
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Overview

o Basics, by means of 2 examples:

o Table game (Thomas Bayes)

o comparison with Maximum Likelihood 

o Coin flipping

o comparison with Maximum Likelihood 

o Empirical Bayes (EB)

o edgeR and relatives
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Related readings

www.matstat.org

o decsription of the table game



Essentials

• Binomial distribution, 𝐵𝑖𝑛 𝑛, 𝑝

• Expectation values, 𝐸 𝑋 , 𝐸 𝑓 𝑋

• Bayes theorem (conditional probabilities)

Essentials.pdf
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Table game: throw a ball

Alice
wins

Bob
wins

𝑝 1 − 𝑝

• Initial throw determines 𝑝 – Alice and Bob don’t see it !
• Probability that Alice wins a single throw : 𝑝
• Probability that Bob wins a single throw : 1 − 𝑝
• First player with 6 points wins
• Intermediate result: 𝐴 = 5; 𝐵 = 3
• How can Alice estimate her chances to win ?

www.matstat.org



Alice’ odds

Hurray !!- that’s it (the solution)!

… Is it ?
We don’t have 𝑝 !

Uwe Menzel, 2012

𝑃 𝐵𝑜𝑏 𝑤𝑖𝑛𝑠 = 𝑃 𝐵𝐵𝐵 = 1 − 𝑝 3

𝑃 𝐴𝑙𝑖𝑐𝑒 𝑤𝑖𝑛𝑠 = 1 − 𝑃 𝐵𝑜𝑏 𝑤𝑖𝑛𝑠 = 1 − 1 − 𝑝 3

Intermediate result: 𝐴 = 5; 𝐵 = 3 ; first player with 6 points wins →
Bob can only win the game when he wins the next 3 throws :

Alice wins if Bob does not win:

(This is the easiest way to think of it since there are multiple possibilities 
how Alice can win.)



1. The naive approach

www.matstat.org

𝐴 = 5 ; 𝐵 = 3 𝑝 =
5

8

Alice won 5 out of 8 throws → the probability that she wins in a 
single throw is Τ5 8: 

𝑜𝑑𝑑𝑠 =
𝑃 𝐴𝑙𝑖𝑐𝑒 𝑤𝑖𝑛𝑠

𝑃 𝐵𝑜𝑏 𝑤𝑖𝑛𝑠
≈ 18: 1

𝑃 𝐴𝑙𝑖𝑐𝑒 𝑤𝑖𝑛𝑠 = 1 − 1 − 𝑝 3 = 1 −
3

8

3

=
485

512

𝑃 𝐵𝑜𝑏 𝑤𝑖𝑛𝑠 =
27

512

The probabilities to win the whole game are therefore:



2. Maximum-Likelihood (ML)
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𝑃 𝑘 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑒𝑠 | 𝑝 =
𝑛
𝑘

𝑝𝑘 1 − 𝑝 𝑛−𝑘

𝑃 𝐴 = 5; 𝐵 = 3 | 𝑝 =
8
5

𝑝5 1 − 𝑝 3 Probability that Alice wins 5 throws out of 8,
probability 𝑝 to win a single throw unknown

Probability mass function for the binomial 
distribution with probability of success = 𝑝

In ML, we search for the parameter 𝑝 that makes the observation most likely, 
i.e. we maximize the following expression w.r.t. the parameter 𝑝: 

The game is a sequence of independent trials (Bernoulli trials); the
probability of success in each trial is 𝑝. Therefore, the number of
successes in 𝑛 trials is binomially distributed:

𝑙 𝑝 = 𝑙𝑛 𝐿 = 𝐶 + 5 ∙ 𝑙𝑛 𝑝 + 3 ∙ 𝑙𝑛 1 − 𝑝

𝐿 𝑝 =
8
5

𝑝5 1 − 𝑝 3 Maximum

𝑑𝑙

𝑑𝑝
=

5

𝑝
−

3

1 − 𝑝
= 0 𝑝 =

5

8
𝑜𝑑𝑑𝑠 ≈ 18: 1

(as in the naive approach)

we can maximize the 
logarithm instead (easier)



2. Maximum-Likelihood (ML)
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3. Bayesian approach

Here, a probability density function 𝑓(𝑝) was introduced. This stands for
the main idea of the Bayesian approach: we treat the parameter under
investigation as a random variable, i.e. we allow the parameter 𝑝 to be
distributed with some 𝑓(𝑝). The observation made is incorporated into
the calculation by using for 𝑓(𝑝) the conditional probability, conditioned
on the observed data, 𝑓 𝑝 = 𝑃 𝑝 | 𝐴 = 5, 𝐵 = 3 , so that we get:
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We had: 𝑃 𝐵𝑜𝑏 𝑤𝑖𝑛𝑠 = 𝑃 𝐵𝐵𝐵 = 1 − 𝑝 3. Now, the idea is to calculate the 
expected value of this expression by considering 𝑝 as a random variable:

Because 𝑝 is continuous in the interval 0, 1 , this reads:

expectation, 𝑝 random!

observed data
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3. Bayesian approach

We need 𝑃 𝑝 𝐴 = 5; 𝐵 = 3), the probability distribution of the parameter 𝑝
given the observed data. This is called the posterior probability, because it is
a probability determined after seeing the data. However, we don’t have
𝑃 𝑝 | 𝐴 = 5; 𝐵 = 3 , we have only 𝑃 𝐴 = 5; 𝐵 = 3 𝑝), delivered by the
binomial probability mass function. This is a nice chance to use Bayes law:

Here, 𝑃(𝑝) is the unconditioned (prior) probability distribution of 𝑝, and
𝑃 5, 3 = 𝑃(𝐴 = 5; 𝐵 = 3) is the total probability of the observation. The
latter can be calculated using the Law of total probability, leading to:



Uwe Menzel, 2012

3. Bayesian approach

now use Bayes law →

integral can be solved

flat prior 
𝑃 𝑝 = 1

We need the prior distribution 𝑃(𝑝). If we have no idea about this distribution, 
we might use a ”flat prior”, 𝑃 𝑝 = 1 in 0, 1 , so that we get:

PMF of the binomial 
distribution was used here

now use total prob. →



න
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Beta integral, leads to Gamma 
function →

3. Bayesian approach



Comparison of the results

naïve approach𝑜𝑑𝑑𝑠 =
𝑃 𝐴𝑙𝑖𝑐𝑒 𝑤𝑖𝑛𝑠

𝑃 𝐵𝑜𝑏 𝑤𝑖𝑛𝑠
= 18: 1

Maximum Likelihood𝑜𝑑𝑑𝑠 =
𝑃 𝐴𝑙𝑖𝑐𝑒 𝑤𝑖𝑛𝑠

𝑃 𝐵𝑜𝑏 𝑤𝑖𝑛𝑠
= 18: 1

Bayesian approach𝑜𝑑𝑑𝑠 =
𝑃 𝐴𝑙𝑖𝑐𝑒 𝑤𝑖𝑛𝑠

𝑃 𝐵𝑜𝑏 𝑤𝑖𝑛𝑠
= 10: 1

www.matstat.org

Which one is correct ?



Which one is correct?

o Just play the game (a lot of times)

o see table_Game.html; more details in table_Game.R

Uwe Menzel, 2012



Distribution of the posterior probability
- given the intermediate result A=5 & B=3 -

www.matstat.org

posterior probability 
𝑃 𝑝 | 𝐴 = 5, 𝐵 = 3

table-Game.R



number of simulated games

o
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Odds vs. #games

Results of the table game simulation

o see table-Game.html (linked)
o the table game algorithm includes random components
o → better and better results can be achieved by simulating more and more games 
o → increase number of played games until the results get stable:

The simulation yields the 
odds 10: 1, the result of the 
Bayesian approach. 



Coin flipping

o Task: infer 𝑝 (which might not be exactly 0.5 !)

o Use:

o observed data:  number of heads tossed;  number of tails tossed

o a-priori knowledge (experience):  𝑝 should be close to 0.5

www.matstat.org

head, probability = 𝑝 tail, 1 − 𝑝

Naive approach:

o 10 flips → ℎ = 3; 𝑡 = 7 (ten flips are by far not enough, but let us use 
this for now to demonstrate the principle)

o → 𝑃 ℎ = Τ3 10 ; 𝑃 𝑡 = Τ7 10

Hmmh, I don’t think we can trust that, this is too far from 0.5. It 
contradicts experience. Try Maximum Likelihood →



Maximum Likelihood

Let 𝑝 be the probability to flip head (“success”). A single flip can be regarded
as a Bernoulli trial. The number of successes in 𝑛 independent Bernoulli trials
is binomially distributed, with the probability mass function

Uwe Menzel, 2012

Likelihood, to maximize!



Bayesian approach

www.matstat.org

We search the probability 𝑝 to flip head. As in the previous example, we
calculate the expected value of this parameter by treating 𝑝 as a
random variable:

expectation, 𝑝 random 

Again, we use a distribution of 𝑝 which is conditioned on the observed data. 
Using Bayes law, we can write:

posterior  ~  likelihood x  prior

alternative: MAP
(maximum a posteori)

posterior  probability likelihood prior probability



Bayesian approach

www.matstat.org

posterior  ~  likelihood x  prior

posterior  probability likelihood prior probability

likelihood, from binomial distribution

𝑃(𝑝) : prior distribution, to be chosen. See below.

𝑃 𝑝 | 𝑑𝑎𝑡𝑎 : posterior distribution, can be calculated once prior is 
chosen. See below.



Probability Density Function

The prior distribution 𝑃(𝑝)

o Bayesian inference: consider 𝑝 = 𝑃(ℎ𝑒𝑎𝑑) as not being “sharp”, but 
distributed with some probability density function

o based on experience, we expect 𝑝 to be closely distributed around 0.5
o therefore, we choose a prior that is concentrated around 0.5
o using the Beta-distribution is very convenient, as we will see below

www.matstat.org

function dbeta() in R
𝛼 = 10

𝛽 = 10



𝑉(𝑋) versus 𝛼, with 𝛼 = 𝛽

The prior distribution 𝑃(𝑝)

www.matstat.org

PDF

mean is 0.5, as desired for coin flipping

The bigger 𝛼 and 𝛽 (with 𝛼 = 𝛽), the lower the 
variance → possibility to control the shape of 
the prior.   𝛼 = 𝛽 = 100 → 𝑉 𝑋 = 0.0012

mean and variance

𝛼 and 𝛽 are called hyperparameters, 
because they determine the distribution of 
another parameter: 𝑝

The Beta-distribution (with 𝛼 = 𝛽) seems to be 
a suitable prior for the coin-flipping problem



The posterior distribution 𝑃 𝑝 | 𝑑𝑎𝑡𝑎

𝑃 𝑝 | 𝑑𝑎𝑡𝑎 =
1

𝑃 𝑑𝑎𝑡𝑎
∙

10
3

𝑝3 1 − 𝑝 7 ∙
𝜞 𝛼 + 𝛽

𝜞 𝛼 ∙ 𝜞 𝛽
∙ 𝑝𝛼−1 ∙ 1 − 𝑝 𝛽−1

𝑃 𝑝 | 𝑑𝑎𝑡𝑎 =
𝑃 𝑑𝑎𝑡𝑎 | 𝑝 ∙ 𝑃 𝑝

𝑃 𝑑𝑎𝑡𝑎
posterior ; likelihood ; prior

න
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law of total probability

in general, we have



We used as prior the distribution 𝐵𝑒𝑡𝑎 𝛼, 𝛽 . The posterior distribution
is also a Beta distribution with somewhat changed parameters. As we
have seen above, we can arbitrarily narrow down the posterior by
choosing higher and higher values for 𝛼 and 𝛽 (see also next page).
Furthermore, as we will see soon, this also shifts the expectation for 𝑝
towards the value 0.5.

The posterior distribution 𝑃 𝑝 | 𝑑𝑎𝑡𝑎

න
Uwe Menzel, 2012

in general, we have

which yields

because PDF

posterior is Beta-distributed

𝑚 = 3 + 𝛼
𝑛 = 7 + 𝛽



The posterior distribution 𝑃 𝑝 | 𝑑𝑎𝑡𝑎
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We can arbitrarily narrow down the posterior by choosing higher and
higher values for 𝛼 and 𝛽. That also shifts the expectation for 𝑝 towards
the value 0.5 (see below).

PDF of the calculated 
posterior probability  
𝐵𝑒𝑡𝑎 3 + 𝛼, 7 + 𝛽 for 
different values of 𝛼 and 𝛽, 
with 𝛼 = 𝛽. Higher values 
of 𝛼 and 𝛽 confine the 
posterior to the region 
around the mean, which is 
0.5 (if 𝛼 = 𝛽). 



Result: Expectation of 𝑝

Uwe Menzel, 2012

expectation, 𝑝 random 

Posterior distribution

use:

posterior distribution



𝛼, 𝛽

𝐸(𝑝)

Result: Expectation of 𝑝
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This is easier to calculate if we choose integers for 𝛼 and 𝛽. In this case, we
can use Γ 𝑛 = 𝑛 − 1 ! (the Γ-function for big arguments might be hard to
calculate)

Increasing the hyperparameters 𝛼
and 𝛽 drives the solution of the coin
flipping problem, i.e. the expected
value of 𝑝, towards 0.5. By choosing
appropiate values for 𝛼 and 𝛽 , we
can come as close as desired to 0.5.
This makes the Bayesian approach
somewhat arbitrary! We can only
choose hyperparameters which are
well-established!



Summary, coin flipping experiment

o Applying the Bayesian approach, we have choosen a prior with a very 
narrow distribution around 0.5 (𝛼 = 𝛽 = 100).

o By incorporating the prior distribution, we actually add pseudocounts to 
the observed counts of both head and tail, driving the expectation for 𝑝
towards 0.5. 

o Adding more and more pseudocounts (higher 𝛼 and 𝛽 ) assigns  more and 
more weight to prior knowledge. 

o We have to find a trade-off between the actually observed data and the 
prior knowledge (represented by the prior distribution).

Approach Estimated 𝑝

Naïve approach 0.3

Maximum likelihood 0.3

Bayes, 𝛼 = 𝛽 = 100 0.4905

www.matstat.org



Task: compare groups (healthy ↔ sick, treated ↔ untreated, …)

o find Differentially Expressed Genes (DEG’s) 

o Statistical (parametric) tests 

Problem: too few measurements in the groups

o unreliable estimates for the parameters ( ത𝑋, ത𝑌, 𝑆𝑥
2, 𝑆𝑦

2)

o hinders identification of significantly DEG’s 

RNA-Seq, Microarrays

large samples small samples

www.matstat.org



edgeR

• Robinson and Smyth, Biostatistics 2008

– estimating the NegBin-variance (dispersion) globally across all genes

– common dispersion across all genes

• Robinson and Smyth, Bioinformatics 2007

– empirical Bayes model for variance estimation

– permits gene specific dispersion which is though driven towards a 
common value inferred from all genes

• Robinson, McCarthy, Smyth, Bioinformatics 2010

– edgeR , see the edgeR users guide

www.matstat.org

global variance

gene-
specific 
variance

geneA   geneB    geneC   geneD   geneE    geneF      geneG       geneH



𝐸 𝑝 = න

0

1

𝑝 ∙
𝑃 𝑑𝑎𝑡𝑎 | 𝑝 ∙ 𝑃 𝑝

𝑃 𝑑𝑎𝑡𝑎
𝑑𝑝

Standard Bayesian

prior is choosen without looking at our 
own data (above, we have choosen 𝛼
and 𝛽 out of prior knowledge, not 
connected to the actual data observed) 

𝑃 𝑝 : Beta-function, parameters 𝛼 and 𝛽

Empirical Bayes (EB)

𝐸 𝜑 = න

0

1

𝜑 ∙
𝑃 𝑑𝑎𝑡𝑎 |𝜑 ∙ 𝑃 𝜑

𝑃 𝑑𝑎𝑡𝑎
𝑑𝜑

hyperparameters estimated from the 
actual observation (e.g. borrowing 
information from neighboring 
locations in same dataset)

𝑃 𝜑 : a function of parameters 
(which can in turn be parametrized)

www.matstat.org



Appendix

Bayesian Statistics

Uwe Menzel, 2012
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Conjugate priors for discrete random variables

Wikipedia

www.matstat.org



Conjugate priors for continuous random variables

Wikipedia

www.matstat.org



ebayes{limma}

o Gordon Smyth, (2004). Linear models and empirical Bayes methods for 
assessing differential expression in microarray experiments. Statistical 
Applications in Genetics and Molecular Biology, Volume 3

o empirical Bayes shrinkage of the standard errors towards a common 
value

o borrow information from all genes to infer the variance for each group of 
replicates

www.matstat.org

https://www.rdocumentation.org/packages
/limma/versions/3.28.14/topics/ebayes


